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1 KERNEL GRADIENT CORRECTION
Computing the deformation gradient using the standard SPH gradient in Eq. (6) leads to artifacts
since it is not 1st-order consistent. To solve this problem we analyze the error of Eq. (6) by replacing
𝐴(X𝑗 ) with its Taylor approximation at the point X𝑖∑︁
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where X𝑗𝑖 = X𝑗 −X𝑖 and ⊗ denotes the dyadic product of two vectors a ⊗ b = ab𝑇 . To solve for ∇𝐴
we subtract the first and third term and multiply with the inverse of the matrix from the second
term. This yields a 1st-order consistent approximation of the gradient
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with the correction matrix [Bonet and Lok 1999]
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2 Kugelstadt et al.

1.1 Computation of Matrix D𝑖

The matrix D𝑖 ∈ R9×3𝑛 , which was introduced in Eq. (12) to compute the deformation gradient, is a
block matrix which is typically sparse. It has a 9 × 3 block for the particle 𝑖 starting at column 3𝑖:
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and one 9 × 3 block for each rest-pose neighbor particle 𝑗 starting at column 3 𝑗 :

(D𝑖 )0,3𝑗 = 𝑉𝑗
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Note that all components of the matrix D𝑖 only depend on quantities from the rest pose which
means that they are constant during the simulation.

1.2 Computation of Matrix H𝑖 𝑗

In Eq. (21) the matrix H𝑖 𝑗 ∈ R3×3𝑛 was introduced to compute the error vectors E𝑖
𝑖 𝑗 . H𝑖 𝑗 is also a

block matrix and typically sparse. It has the a 3 × 3 block for particle 𝑖 starting at column 3𝑖:

(H𝑖 𝑗 )0,3𝑖 = −
∑︁
𝑘∈N0
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𝑉𝑘 (L𝑖∇𝑊𝑖𝑘 )𝑇 X𝑖 𝑗1 − 1. (5)

For the rest-pose neighbor particle 𝑗 = 𝑘 we get

(H𝑖 𝑗 )0,3𝑗 = 𝑉𝑘
(
L𝑖∇𝑊𝑖 𝑗

)𝑇 X𝑖 𝑗1 + 1, (6)
and finally for the neighbor particle 𝑘 ≠ 𝑗 we get

(H𝑖 𝑗 )0,3𝑘 = 𝑉𝑘 (L𝑖∇𝑊𝑖𝑘 )𝑇 X𝑖 𝑗1. (7)
Note that the matrix H𝑖 𝑗 is constant during the simulation since its components only depend on
quantities from the rest pose.
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