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Fig. 1. Left: Stable simulation of eight walrus models (210k particles) that are pushed through a tight funnel
and impact the water in a container with 1.2M fluid particles. Right: To showcase the coupling capabilities of
our method 10 deformable solids and 4 rigid tori are dropped into a bowl while water and a highly viscous
fluid are poured on top. A total of 800k particles are used for the fluids and 252k for the elastic objects.

We develop a new operator splitting formulation for the simulation of corotated linearly elastic solids with
Smoothed Particle Hydrodynamics (SPH). Based on the technique of Kugelstadt et al. [2018] originally devel-
oped for the Finite Element Method (FEM), we split the elastic energy into two separate terms corresponding to
stretching and volume conservation, and based on this principle, we design a splitting scheme compatible with
SPH. The operator splitting scheme enables us to treat the two terms separately, and because the stretching
forces lead to a stiffness matrix that is constant in time, we are able to prefactor the system matrix for the
implicit integration step. Solid-solid contact and fluid-solid interaction is achieved through a unified pressure
solve. We demonstrate more than an order of magnitude improvement in computation time compared to a
state-of-the-art SPH simulator for elastic solids.

We further improve the stability and reliability of the simulation through several additional contributions.
We introduce a new implicit penalty mechanism that suppresses zero-energy modes inherent in the SPH
formulation for elastic solids, and present a new, physics-inspired sampling algorithm for generating high-
quality particle distributions for the rest shape of an elastic solid. We finally also devise an efficient method
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for interpolating vertex positions of a high-resolution surface mesh based on the SPH particle positions for
use in high-fidelity visualization.
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1 INTRODUCTION
Many of the current state-of-the-artmethods for simulating fluids in computer graphics aremeshless,
either by discretizing the dynamics exclusively with particles (e.g. SPH) or in hybrid synergy with a
Eulerian discretization (FLIP, APIC, etc.). Though meshless methods are considered somewhat less
efficient than mesh-based methods for the simulation of elastic solids, they excel in their flexibility.
A unified representation for solids and fluids significantly simplifies the coupling between the
different physical models involved, and furthermore facilitates state transitions, such as melting or
solidification.
SPH is an established simulation method for fluids in computer graphics. Recent work has

made SPH an increasingly compelling alternative also for elastic solids. Our work extends the
state-of-the-art simulation of elastic solids with SPH in several ways.
Our main contribution is a new SPH operator splitting formulation of the corotated linear

elastic material model. The technique was initially introduced by Kugelstadt et al. [2018] for the
simulation of elastic solids with the FEM, and relies on the realization that the stiffness matrix
can be decomposed into a sum of a constant matrix associated with the stretch forces and a time-
dependent matrix corresponding to the volume conserving terms. For many compressible objects,
the constant matrix term is generally dominating. We demonstrate that this decomposition leads to
a constant matrix for the stretching term also when we use an SPH discretization, and we introduce
an operator splitting scheme tailored to the SPH formulation for elastic solids so that the stretching
force terms are handled separately by a prefactored direct solve, while the volume conserving terms
are incorporated into a later Conjugate Gradient solve. Finally, solid-fluid coupling and solid-solid
contact handling — including self-contact — are achieved by integrating the solid particles into the
preexisting pressure solver. We demonstrate that our formulation enables more than an order of
magnitude faster time-stepping than the state-of-the-art method by Peer et al. [2018].
A well-known deficiency of the SPH solid formulation used here is the presence of zero-energy

modes, which leads to unstable simulations in the form of strong local oscillations and an inability
to return to the rest state. Ganzenmüller [2015] introduced a control mechanism that suppresses
the zero-energy modes by introducing a correction force through explicit time integration. Inspired
by this approach, we introduce an improved zero-energy mode penalty force that conserves linear
and angular momentum, and whose stiffness parameter can be controlled independently of the
material parameters of the solid. Unless small time steps are taken, the explicit integration used by
Ganzenmüller can itself lead to instabilities. In contrast, we ensure stability by implicitly integrating
our penalty force along with the stretching terms of the elastic model. The contributions to the
system matrix are constant in time and can therefore be included in the prefactored system matrix,
and hence have no impact on the time required to solve the linear system. We demonstrate through
multiple experiments the benefits of implicit zero-energy mode suppression.
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By using SPH to simulate solids, it is not necessary to obtain a high-quality simulation mesh
as is the case with the FEM. Instead only a sampling of points in the solid interior is sufficient.
This can most simply be obtained by sampling points on a regular grid and discarding points
outside the solid. However, as we show in the accompanying video, regular sampling might lead to
problematic particle configurations in thin features, which results in significant simulation artifacts.
To alleviate this problem, we introduce a physics-inspired sampling algorithm that we demonstrate
to significantly reduce the likelihood of simulation artifacts due to the particle sampling. Moreover,
we experimentally verify that our sampling method produces visually higher quality results than
the state-of-the-art blue noise sampling algorithm [Jiang et al. 2015b].

In order to visualize deformed solids, we use a high-fidelity surface mesh for the rest shape that
is deformed along with the simulation. Our final contribution is a straightforward and efficient
algorithm for computing vertex positions of a high-resolution mesh based on the positions of the
SPH solid particles. Our interpolation algorithm preserves the fidelity of the rest pose mesh while
adhering to the deformation represented by the SPH particles.

We demonstrate that our method is suitable for use in complex, multi-physics scenarios through
several experiments, examples of which can be found in Figure 1.

2 RELATEDWORK
There exists a broad range of approaches to simulate deformable objects in computer animation.
Mass-spring systems are perhaps the most simple models and were introduced in the early days of
physically based animation. They can be used to simulate deformable materials like cloth [Bridson
et al. 2002; Provot 1995] but also volumetric solids [Teschner et al. 2004]. Even today they are favored
for their ease of implementation and potentially low computational cost. However, in general, mass-
spring systems are not motivated by a continuum mechanics perspective which makes it harder
to obtain behavior that resembles common material models. Similar characteristics are shared
by shape matching [Müller et al. 2005] and other position based dynamics approaches [Müller
et al. 2006]. They were successfully used to build unified frameworks to simulate rigid bodies,
deformables and fluids, as presented for example by Macklin et al. [2014]. For an overview of these
methods we refer to the survey of Bender et al. [2017].

For our use case we will focus on methods that are directly derived from continuum mechanics
theory. One of the most wide-spread approaches in this category is FEM. For a general overview
covering FEM we refer to the tutorial by Sifakis and Barbic [2012] or the survey by Nealen et
al. [2006]. This publication in particular builds upon previous work by Kugelstadt et al. [2018] who
presented a fast operator-splitting method for the simulation of corotated linear elastic deformables
with FEM. As mentioned earlier, one core contribution of this work is to adapt this approach to a
particle-based discretization using SPH.

SPH. Smoothed particle hydrodynamics is a popular particle-based method from the fields of
computational physics and fluid mechanics [Ganzenmüller 2015; Monaghan 2012] adopted by
the graphics community originally for materials with large inelastic deformations [Desbrun and
Gascuel 1996]. A vast amount of research in the field of computer animation proposes extensions
or improvements for different aspects of SPH fluid simulations. This includes works on implicit
pressure solvers [Bender and Koschier 2017; Cornelis et al. 2019; Ihmsen et al. 2014; Weiler et al.
2016], and implicit viscosity formulations [Peer et al. 2015; Weiler et al. 2018]. Considering the great
results obtained with SPH for fluids, it was a natural step to experiment with unified simulators
that support other materials and phases. Notable contributions in this direction, in particular for
robust interaction of SPH fluids and rigid bodies are the works by Akinci et al. [2012], Akbay et
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al. [2018] and especially the recent work on strong coupling by Gissler et al. [2019]. For a general
overview of SPH we refer to the tutorial by Koschier et al. [2019].
In the context of deformable solids, Solenthaler et al. [2007] proposed to use SPH to evaluate

the deformation gradient to model a linear elastic material. As the standard SPH formulation
is not 1st-order consistent [Bonet and Lok 1999], the resulting deformation gradients were not
rotationally invariant. This resulted in artifacts, specifically forces counteracting the rotations.
Becker et al. [2009] instead proposed to use shape matching to determine the deformation gradient
and employed corotated linear elasticity combined with explicit time integration. Instead of shape
matching, Peer et al. [2018] again proposed an entirely SPH based formulation that addressed the
known issues. They resorted to a kernel gradient correction proposed by Bonet and Lok [1999]
which ensures that the SPH gradients are 1st-order consistent. Peer et al. also use a corotated
formulation combined with implicit time integration allowing for large time steps. An implicit
SPH pressure solver enforces incompressibility and allows coupling with fluids. Instead of relying
entirely on SPH, Abu Rumman et al. [2019] developed a method for coupling PBD deformables with
SPH fluids. They introduced a free-surface formulation that does not explicitly depend on a surface
or volumetric particle sampling of the deformables. This is relatively fast and interactive simulations
can be achieved but also shares the downsides of PBD deformables, that it is difficult to model
common elastic materials. Further works that couple SPH with other methods for the simulation of
deformables include the papers of Dagenais et al. [2012] who used a predictor-corrector approach
with shape matching and Huber et al. [2015] who presented a coupling method for cloth with SPH
supporting wetting and no-slip boundary conditions. Recently, Gissler et al. [2020] proposed a
solver for the simulation of compressible elastoplastic snow. They introduced a compressible SPH
pressure solver which is coupled with a linear implicit elasticity solver inspired by the work of
Peer et al. but adapted for plasticity.

Alternative approaches. In recent years, the material point method (MPM) gained popularity in
the graphics community for multi-material simulations due to its versatility as demonstrated for
example by Stomakhin et al. by simulating snow and phase change of materials [Stomakhin et al.
2014]. MPM is a hybrid Eulerian and Lagrangian method that transfers quantities back and forth
between a particle and a grid representation. Early problems with large dissipation or instabilities
due to the transfer were addressed by the APIC method by Jiang et al. [2015a]. A large amount of
publications explores MPM for various uses cases with multi-material or multi-phase simulations
for example frictional contact [Han et al. 2019], liquid-solid coupling [Fei et al. 2019, 2018, 2017]
and strong nonlinear coupling without MPM-typical sticking [Fang et al. 2020]. With SPH we are
instead using a purely Lagrangian approach which also avoids problems like artificial plasticity
that might arise when relying on a hybrid method without special care.

Inspired from computational physics, models based on peridynamics theory were also introduced
to the field of computer animation. At its core, peridynamics is a continuum based method using
global integral equations which can be discretized using particles. It is especially well suited for
simulating fracturing [Chen et al. 2018; Levine et al. 2014] but can also be used for elastoplastic,
viscous and granular materials [He et al. 2018].

Another category of methods are particle-based formulations using MLS interpolation. First
introduced in the field of physically based animation by Müller et al. [2004], a typical MLS-based
method uses least squares to fit polynomials of arbitrary order to a quantity in a particle’s neigh-
borhood. Due to the possible higher order of the polynomials this allows more accurate evaluations
than in standard SPH formulations. MLS was proposed for elastic deformables [Keiser et al. 2005],
plasticity [Gerszewski et al. 2009; Jones et al. 2014; Zhou et al. 2013], fracturing [Pauly et al. 2005],
unified volumetric, shell and rod simulation [Martin et al. 2010] and multi-phase simulation [Chen
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et al. 2020]. However, the higher-order approaches increase complexity, can be significantly more
expensive and without special care, degenerate particle configurations can also introduce problems.
Overall, the SPH approach with the kernel gradient correction we use is quite similar to a 1st-order
MLS interpolation. Therefore, we believe that our approach can also be adapted to be used in an
MLS-based simulator. For now, our goal was to couple a fast simulation of deformables with other
recent advances specifically from the SPH community.

3 ELASTIC MODEL
This section introduces the continuum formulation of deformable solids and an SPH discretization of
the corresponding forces. In Section 4 we discuss the problem of zero-energy modes and introduce
a novel implicit method for zero-energy mode suppression. Our efficient time discretization using
operator splitting is introduced in Section 5. Finally, we discuss solid-fluid coupling, our particle
sampling method and mesh skinning in Sections 6, 7 and 8.

3.1 Continuum Formulation
To simulate deformable objects we will employ the total Lagrangian formulation of SPH. This
means the equations of motion and the constitutive laws are described using the positions in the
undeformed rest pose, the so called reference coordinates X. The deformed positions x of a body at
time 𝑡 can be found with the deformation mapping x = 𝜙 (X, 𝑡) (see [Sifakis and Barbic 2012] for
more details). Elastic energies are usually expressed in terms of the deformation gradient F which
can be found by taking the derivative of the deformation mapping w.r.t. the reference positions X:

F =
𝜕x
𝜕X

. (1)

In the following we use the corotated linear constitutive model with the elastic energy density
[Sifakis and Barbic 2012]

Ψ = 𝜇 ∥ F − R ∥2𝐹 +𝜆
2
tr(R𝑇 F − 1)2, (2)

where R is the rotational part of the deformation gradient which can be computed using a polar
decomposition, 1 is the identity matrix, ∥ · ∥𝐹 denotes the Frobenius norm, and 𝜇 and 𝜆 are the
Lamé parameters. The first term results in an elastic response to stretching and compression in
the individual spatial directions and the second term models resistance to volume changes of the
material. The total deformation energy of a body can be found by computing the integral of the
energy density over the rest-pose domain Ω of the body

𝐸 =

∫
Ω
Ψ (F(X)) 𝑑X. (3)

3.2 SPH Discretization
In order to evaluate the elastic energy and forces numerically, we apply a spatial discretization
using SPH. To do so, we sample the undeformed body with 𝑛 equally sized particles (for details see
Section 7) which store the values of the field quantities at their respective positions. This allows us
to interpolate an arbitrary field quantity 𝐴(X) at position X𝑖 as

𝐴(X𝑖 ) ≈
∑︁
𝑗∈N0

𝑖

𝑉𝑗𝐴(X𝑗 )𝑊 (∥ X𝑖 − X𝑗 ∥, ℎ), (4)

where𝑊 is a radially symmetric kernel function with compact support, ℎ is the smoothing length
of the kernel andN 0

𝑖 is the set of particles which are inside the support radius of the kernel when it
is centered at X𝑖 . The superscript 0 inN 0

𝑖 indicates that we take the rest-pose neighbors. The set of
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neighbors in the current pose will be denoted as N𝑖 . Assuming all particles have the same mass, 𝑉𝑗

is the rest-pose volume of the particle with index 𝑗 which is computed as [Solenthaler et al. 2007]

𝑉𝑖 =
1∑

𝑗∈N0
𝑖
𝑊 (∥ X𝑖 − X𝑗 ∥, ℎ)

. (5)

In the following we will use a shorter notation for the function arguments 𝐴𝑖 = 𝐴(X𝑖 ) and
𝑊𝑖 𝑗 =𝑊 (∥ X𝑖 − X𝑗 ∥, ℎ). Note that 𝐴𝑖 and𝑊𝑖 𝑗 always mean that we evaluate the function using
the rest-pose positions.
Derivatives can be computed by applying the differential operator to the kernel function such

that the gradient becomes

∇𝐴𝑖 =
𝜕𝐴𝑖

𝜕X𝑖

≈
∑︁
𝑗∈N0

𝑖

𝑉𝑗𝐴 𝑗∇𝑊𝑖 𝑗 . (6)

With this approximation we can compute the deformation gradient of a particle with index 𝑖 by
plugging in the components of the deformed positions x for 𝐴. However, it was pointed out by
Bonet and Lok [1999] that this approximation leads to erroneous deformation gradients because
it is not 1st-order consistent, i.e. it cannot guarantee that linear functions are reproduced exactly.
Peer et al. [2018] demonstrated that this leads to artifacts so that the bodies cannot rotate. This
problem can be overcome by constructing a 1st-order consistent discretization of the SPH gradient
operator [Bonet and Lok 1999]:

∇𝐴𝑖 ≈
∑︁
𝑗∈N0

𝑖

𝑉𝑗 (𝐴 𝑗 −𝐴𝑖 )L𝑖∇𝑊𝑖 𝑗 (7)

with the 3 × 3 kernel correction matrix

L𝑖 =
©«
∑︁
𝑗∈N0

𝑖

𝑉𝑗∇𝑊𝑖 𝑗 ⊗ X𝑗𝑖
ª®¬
−1

, (8)

whereX𝑗𝑖 = X𝑗 −X𝑖 and ⊗ denotes the dyadic product of two vectors a⊗b = ab𝑇 . The derivation of
the matrix can be found in the supplemental document. For the Lagrangian SPH formulation it only
depends on the rest-pose positions such that it can be precomputed and stored at the beginning of
the simulation.
The deformation gradient of particle 𝑖 can be found by plugging in the components of the

positions of the deformed state for 𝐴 [Peer et al. 2018]:

F𝑖 =
∑︁
𝑗∈N0

𝑖

𝑉𝑗x𝑗𝑖 ⊗ L𝑖∇𝑊𝑖 𝑗 , (9)

where we introduced the short notation x𝑗𝑖 = x𝑗 − x𝑖 . Note that in contrast to the common
SPH formulation for fluids we are summing over the particle neighborhoods from the rest-pose
configuration and the volume 𝑉𝑗 and the corrected kernel gradient are also evaluated in the rest-
pose.
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The integral in the elastic energy (3) can be split up into integrals over the individual particle
volumes and these can be approximated by applying a simple one point quadrature resulting in

𝐸 =
∑︁
𝑖

∫
𝑉𝑖

Ψ (𝜙 (X)) 𝑑X

≈
∑︁
𝑖

𝜇𝑖𝑉𝑖 ∥ F𝑖 − R𝑖 ∥2𝐹 +
∑︁
𝑖

𝜆𝑖𝑉𝑖

2
tr(R𝑇𝑖 F𝑖 − 1)2

= 𝐸s + 𝐸v.

(10)

Here we introduced the notation 𝐸s for the stretching part and 𝐸v for the part of the elastic energy
related to volume conservation.

3.3 Stretching Forces
In order to compute the stretching forces we rewrite the stretching energy 𝐸s from Eq. (10) of one
particle with index 𝑖 as [Kugelstadt et al. 2018]

𝐸s𝑖 (x) = 𝜇𝑖𝑉𝑖 ∥ vec(F𝑖 ) − vec(R𝑖 ) ∥2, (11)

where we vectorize the 3 × 3 matrices by concatenating the columns into 9d vectors. Now the
deformation gradient can be expressed as a matrix-vector product

D𝑖x = vec(F𝑖 ) =
∑︁
𝑗∈N0

𝑖

𝑉𝑗
©«
x𝑗𝑖 (L𝑖∇𝑊𝑖 𝑗 )1
x𝑗𝑖 (L𝑖∇𝑊𝑖 𝑗 )2
x𝑗𝑖 (L𝑖∇𝑊𝑖 𝑗 )3

ª®¬ , (12)

where (·)𝑘 denotes the 𝑘-th component of a vector. More details about the computation of matrix
D𝑖 can be found in the supplemental document.
With this notation we can write the sum for the total stretching energy as a matrix-vector

product as well

𝐸s (x) =
∑︁
𝑖

𝜇𝑖𝑉𝑖 ∥ D𝑖x − vec(R𝑖 ) ∥2 = ∥ K1/2 (Dx − r) ∥2, (13)

where the matrix D ∈ R9𝑛×3𝑛 contains all matrices D𝑖 stacked on top of each other, r contains all
vectorized rotations concatenated into one vector, and K = diag(𝜇1𝑉119×9, · · · , 𝜇𝑛𝑉𝑛19×9). Now,
we can compute the forces as

f s = − 𝜕𝐸s

𝜕x
= −2D𝑇KDx + 2D𝑇Kr. (14)

Because the matrix D only depends on the rest-pose positions it will be constant during the
simulation (see supplemental document).

3.4 Volume Conserving Forces
Finally, we have to compute the volume conserving forces by taking the negative gradient of 𝐸v
w.r.t. x𝑖 :

fv𝑖 =
∑︁
𝑗

𝑉𝑗

𝜕Ψv
𝑗

𝜕x𝑖
= 𝑉𝑖

𝜕Ψv
𝑖

𝜕F𝑖
:
𝜕F𝑖
𝜕x𝑖

+
∑︁
𝑗∈N0

𝑖

𝑉𝑗

𝜕Ψv
𝑗

𝜕F𝑗
:
𝜕F𝑗
𝜕x𝑖

, (15)

where Ψv
𝑖 denotes the volume conserving part of the energy density in Eq. (2). The derivative of

the energy density w.r.t. the F is known as the first Piola-Kirchhoff stress tensor [Sifakis and Barbic
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2012]

P𝑖 =
𝜕Ψv

𝑖

𝜕F𝑖
= 𝜆𝑖 tr(R𝑇𝑖 F𝑖 − 1)R𝑖 . (16)

The derivatives of the deformation gradient result in the third-order tensors

𝜕F𝑖
𝜕x𝑖

= −
∑︁
𝑗∈N0

𝑖

𝑉𝑗1 ⊗ L𝑖∇𝑊𝑖 𝑗 ,
𝜕F𝑗
𝜕x𝑖

= 𝑉𝑖1 ⊗ L𝑗∇𝑊𝑗𝑖 . (17)

Using the relationA : 1⊗b = Ab for a 3×3matrixA and a 3d vector b results in the forces [Ganzen-
müller 2015]

fv𝑖 =
∑︁
𝑗∈N0

𝑖

𝑉𝑖𝑉𝑗 (P𝑖L𝑖∇𝑊𝑖 𝑗 − P𝑗L𝑗∇𝑊𝑗𝑖 ). (18)

4 ZERO-ENERGY MODES
The one point quadrature approximation used in Eq. (10) has the advantages that it is simple and
it leads to very efficient computations. However, it can cause visual artifacts due to the so called
zero-energy modes [Ganzenmüller 2015], a similar problem to the hourglass modes known in FEM
simulations. Using only one quadrature point for each particle neighborhood means that we take
only one constant deformation gradient to describe the deformation of the particle neighborhood.
The 9 components of F𝑖 can only account for linear deformation. But the actual neighborhood
usually consists of 30-40 particles such that it can in principle take on more complicated non-linear
deformations. In practice this happens, e.g. due to strong deformations which are induced by
boundary conditions or collisions. Since the non-linear part of the deformation is not captured by
the deformation gradient, it does not contribute to the elastic energy (hence the name zero-energy
modes) and prevents that the particles return into their rest-pose.

One way to avoid zero-energy modes is to use more quadrature points. However, it is not trivial to
find out where the additional quadrature points have to be placed when the particle sampling in the
rest pose is irregular as pointed out by Ganzenmüller [2015]. Moreover, the additional quadrature
points drastically increase the computation costs.

4.1 Implicit Zero-Energy Mode Suppression
An alternative solution is to compute additional forces in order to suppress the zero-energy modes
as suggested by Ganzenmüller [2015]. Inspired by his method we derive additional penalty forces
to counteract the zero-energy modes without the need for additional quadrature points. In contrast
to Ganzenmüller’s explicit method which is only conditionally stable, we propose an implicit
approach.
Our goal is to penalize the non-linear part of the deformations so that we obtain deformations

which can be accurately captured by the deformation gradients of the particles. The non-linear part
can be found by subtracting the total deformation from the linear deformation. We consider the
line segment which is formed by two particles with indices 𝑖 and 𝑗 . To apply the linear deformation
we multiply its rest pose positions with the deformation gradient while the non-linear deformation
is given by the relative position in the current pose. This results in the error

E𝑖 𝑗 = F𝑖X𝑖 𝑗 − x𝑖 𝑗 . (19)
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We define a quadratic energy to penalize this error for each particle by computing the SPH average
of ∥ E𝑖 𝑗 ∥2 using Eq. (4). To obtain the total energy we take the sum over all particles

𝐸ze =
𝛼

2

∑︁
𝑖

𝜇𝑖𝑉𝑖

∑︁
𝑗∈N0

𝑖

𝑉𝑗

∥ E𝑖 𝑗 ∥2

∥ X𝑖 𝑗 ∥2
𝑊𝑖 𝑗 , (20)

where 𝛼 is a user defined stiffness parameter. We divide E𝑖 𝑗 by ∥ X𝑖 𝑗 ∥ so that it becomes a
dimensionless strain and we multiply with 𝜇𝑖𝑉𝑖 so that the correction forces are proportional to the
elastic forces and the 𝛼 parameter becomes independent of the material stiffness.
We remark that our method is not just the result of direct implicit integration of the force

proposed by Ganzenmüller. In order to conserve angular momentum, Ganzenmüller argues that it
was necessary to project the error E𝑖 𝑗 onto the line between the two particles. Since we instead
define a translation-invariant and rotation-invariant penalty energy based on E𝑖 𝑗 , we obtain a force
expression that does not require projection of the error. Because of Noether’s theorem the rotational
invariance means that the penalty forces derived from this energy will preserve angular momentum.
Linear momentum is preserved as well since the energy is translation invariant. This can be easily
seen because only position differences x𝑖 𝑗 are considered which are invariant to translations of the
particles.
To see that the energy is rotation invariant, consider the case when the current positions x𝑖 of

all particles are rotated with the rotation matrix R. Then the deformation gradient becomes RF𝑖 as
we see in Eq. (9) and the error becomes RE𝑖 𝑗 for all 𝑖 and 𝑗 . Because we take the squared norm of
the error to obtain the energy in Eq. (20) and the norm is rotation invariant the energy is rotation
invariant as well.

4.2 Zero-Energy Mode Forces
To derive the forces for the zero-energy mode suppression we also rewrite the corresponding
energy as a matrix-vector product. First, we rewrite the error vectors E𝑖 𝑗 from Eq. (19) as a product
of a constant matrix with the positions x:

E𝑖 𝑗 =
∑︁
𝑘∈N0

𝑖

𝑉𝑘x𝑘𝑖 (L𝑖∇𝑊𝑖𝑘 )𝑇X𝑖 𝑗 − x𝑖 𝑗 = H𝑖 𝑗x. (21)

Details about the computation of the matrix H𝑖 𝑗 can be found in the supplemental document.
With this notation we can rewrite the sum over all neighbors in Eq. (20) as a matrix vector

product

𝐸ze =
1
2

∑︁
𝑖

∑︁
𝑗∈N0

𝑖

x𝑇H𝑇
𝑖 𝑗 K̃𝑖 𝑗H𝑖 𝑗x =

1
2

∑︁
𝑖

x𝑇H𝑇
𝑖 K̃𝑖H𝑖x, (22)

by concatenating the H𝑖 𝑗 matrices for all neighbors into one matrix H𝑖 = (H𝑇
𝑖1, ...,H

𝑇
𝑖𝑛𝑖

)𝑇 where
𝑛𝑖 is the number of neighbors of particle 𝑖 . The constant factors are encapsulated in the diagonal
matrices K̃𝑖 𝑗 = 𝛼𝜇𝑖𝑉𝑖𝑉𝑗𝑊𝑖 𝑗/∥ X𝑖 𝑗 ∥2 1 which are combined into K̃𝑖 = diag(K̃𝑖1, ..., K̃𝑖𝑛𝑖 ). The same
can be done with the sum over all particles 𝑖 so that we get

𝐸ze (x) = 1
2
x𝑇H𝑇 K̃Hx, (23)

with H = (H𝑇
1 , ...,H

𝑇
𝑛 )𝑇 and K̃ = diag(K̃1, ..., K̃𝑛). The forces are computed as the negative gradient

of the energy:

fze = − 𝜕𝐸𝑍𝐸

𝜕x
= −H𝑇 K̃Hx. (24)
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10 Kugelstadt et al.

Note that the matrices H and K̃ only depend on the rest-pose positions and the stiffness parameters
such that they are constant during the simulation (see supplemental document).

5 TIME DISCRETIZATION
The elastic energy 𝐸 = 𝐸s + 𝐸v + 𝐸ze consists of three terms: stretching 𝐸s, volume conservation 𝐸v

and the zero-energy mode penalty 𝐸ze. We make the commonly used assumption that the rotation
is computed at the beginning of each time step and kept constant during the step. Then, all energy
terms are quadratic in x such that we will obtain forces that are linear in the positions and result in
the following linear system per backwards Euler step:

MΔv = Δ𝑡
(
fext + f s (x𝑛+1) + fv (x𝑛+1) + fze (x𝑛+1)

)
, (25)

x𝑛+1 = x𝑛 + Δ𝑡 (v𝑛 + Δv). (26)

Here, M = diag(𝑚11,𝑚21, ...,𝑚𝑛1) is a diagonal mass matrix, v contains the velocities, x the
positions and fext the external forces of all particles, Δ𝑡 is the time step size, and the superscript
𝑛 / 𝑛 + 1 denotes the current / next time step. Solving for the velocity changes Δv is convenient
because for static particles they are 0. This means that some particles can be fixed by removing the
corresponding equations from the linear system.

5.1 Operator Splitting
In the context of corotated FEM Kugelstadt et al. [2018] observed that the stretching term has
a constant stiffness matrix when the Lamé parameters are constant. The stiffness matrix of the
volume conserving term changes in every time step because of the changing rotation matrices.
This is also true when we use our SPH discretization since the stretching force in Eq. (14) linearly
depends on x while the volume conserving force in Eq. (18) also depends on the rotation matrix.
Our zero-energy mode term also has a constant stiffness matrix (cf. Eq.(24)). This observation can
be used to speed up the simulation by applying operator splitting and solving the terms with the
constant system matrix with a direct solver by using a precomputed Cholesky factorization. The
remaining volume conservation term is solved with a conjugate gradient (CG) solver. Our results
show that this approach is much faster than solving the whole system with CG.
First, we solve the system without considering the volume conservation term to determine the

velocity updates Δv

MΔv = Δ𝑡
(
fext + f s (x̃ + Δ𝑡Δv) + fze (x̃ + Δ𝑡Δv)

)
, (27)

which are used to find the intermediate velocities v∗ = v𝑛+Δv. Here x̃ = x𝑛+Δ𝑡v𝑛 . In a next step we
solve the linear system for the volume conserving term to obtain the new velocities v𝑛+1 = v∗ +Δv∗:

MΔv∗ = Δ𝑡fv (x∗ + Δ𝑡Δv∗), (28)

with x∗ = x𝑛 + Δ𝑡v∗. Note that before solving the second linear system (28) we recompute the
required rotation matrices using the updated positions x∗ in order to consider the changes due to
the solve of the first system (27) (cf. Algorithm 1).

Stretching and Zero-Energy Mode Term. Plugging the forces into Eq. (27) yields the linear system(
M + 2Δ𝑡2D𝑇KD + Δ𝑡2H𝑇 K̃H

)
Δv = Δ𝑡

(
fext − 2D𝑇K(Dx̃ − r) − H𝑇 K̃Hx̃

)
. (29)

Here we see that the system matrix is constant as long as the time step size, the Lamé parameters
and the parameter 𝛼 do not change. This means that we can precompute its Cholesky factorization
so that we can solve the linear system very efficiently at runtime with linear complexity in the
number of non-zeros in the triangular factor by using backward and forward substitution. Note that
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Fast Corotated Elastic SPH Solids with Implicit Zero-Energy Mode Control 11

the components 𝑥 ,𝑦 and 𝑧 are independent of each other. Hence, the system can be solved in parallel
per component and per body. Because the matrix H has the same sparsity pattern as D, adding
the zero-energy mode suppression does not add non zeroes to the Cholesky factorization, and
therefore it does not negatively influence the time to solve the linear system. We will discuss later
how we can use adaptive time stepping even though a fixed time step is used in the precomputed
factorization.

Volume Conservation Term. In order to construct the linear system for the volume conservation
term, we split the volume conserving force in Eq. (18) into a constant term f𝑐𝑖 and a linear term
f𝑙𝑖 (x) so that fv𝑖 (x) = f𝑐𝑖 + f𝑙𝑖 (x):

f𝑐𝑖 =
∑︁
𝑗∈N0

𝑖

𝑉𝑖𝑉𝑗 (3𝜆𝑖R𝑖L𝑖∇𝑊𝑖 𝑗 − 3𝜆 𝑗R 𝑗L𝑗∇𝑊𝑗𝑖 ),

f𝑙𝑖 =
∑︁
𝑗∈N0

𝑖

𝑉𝑖𝑉𝑗 (𝜆𝑖 tr(R𝑇𝑖 F𝑖 )R𝑖L𝑖∇𝑊𝑖 𝑗 − 𝜆 𝑗 tr(R𝑇𝑗 F𝑗 )R 𝑗L𝑗∇𝑊𝑗𝑖 ).

The force f𝑐𝑖 is constant since we keep the rotation constant during the step. The linear system for
backwards Euler from Eq. (28) becomes

MΔv∗ − Δ𝑡f𝑙 (Δ𝑡Δv∗) = Δ𝑡 (f𝑙 (x∗) + f𝑐 ). (30)

The linear part of the forces depends on the rotation matrices so that the system matrix changes in
every time step. Hence, we cannot use a precomputed factorization. Because it is very expensive to
compute the Cholesky factorization at runtime we will solve this system with an iterative CG solver.
We can avoid building the full system matrix because CG only requires products of the matrix with
a given vector. These can be computed efficiently by evaluating the linear part of the forces. To do
so we iterate twice over all particles and their neighbors. In the first loop we compute the stress
tensors for all particles and in the second one we evaluate the forces. To speed up the convergence
we use the velocity increments Δv∗ from the last time step as an initial guess to warm-start our
matrix-free CG solver.

6 COLLISIONS AND SOLID-FLUID COUPLING
We integrate the solid solver into an SPH fluid simulation framework as shown in Algorithm 1. For
our experiments we used the DFSPH method [Bender and Koschier 2017] but it would work in the
same way for other methods like IISPH [Ihmsen et al. 2014] or position-based fluids [Macklin and
Müller 2013]. We have two sets of particles, one for the fluid and one for the solids. The coupling is
achieved by including the solid particles into the pressure solver which enforces a constant particle
density and a divergence-free velocity field. This prevents fluid particles from entering the solids
and accounts for collisions and self-collisions of the solids. We first apply external and elastic forces
as well as other non-pressure forces and perform the pressure solve at the end of the time step such
that we have a collision free state after the step.
It is common practice that SPH fluid solvers use adaptive time steps based on a CFL condition

to prevent artifacts due to collocated particles. However, the system matrix of the solid solver in
Eq. (29) depends on the time step so that we cannot change Δ𝑡 in every simulation step because
computing the Cholesky factorization is expensive. Therefore, we use different time steps for the
solid and the fluid which was proposed by Peer et al. [2018] and is similar to the asynchronous SPH
approach of Reinhardt et al. [2017]. While the step size Δ𝑡el of the elasticity solver stays constant,
the time step Δ𝑡 of the pressure solver is determined using the CFL condition Δ𝑡 = 0.4𝑑/∥v∥∞,
where 𝑑 is the particle diameter. To implement this we transform the velocity changes determined
by the elasticity solver into accelerations and then interpolate the final velocities using the time
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12 Kugelstadt et al.

Algorithm 1 Coupled solid-fluid solver
1: perform neighborhood search
2: apply non-pressure forces to get v𝑛
3: x̃ := x𝑛 + Δ𝑡elv𝑛

4: compute rotations R𝑖 using x̃
5: Solve Eq. (29) for Δv ⊲ solve stretching and ZE terms using precomp. Cholesky fact.
6: v∗ := v𝑛 + Δv
7: x∗ := x𝑛 + Δ𝑡elv∗

8: compute rotations R𝑖 using x∗
9: Solve Eq. (30) for Δv∗ ⊲ solve volume conservation term using matrix-free CG
10: v∗∗ := v + Δv∗

11: a = (v∗∗ − v𝑛)/Δ𝑡el
12: v𝑛+1 = v𝑛 + Δ𝑡a
13: pressure solve using DFSPH

step size Δ𝑡 (see Algorithm 1, lines 11 & 12). Figure 1 shows complex experiments which were
performed with this time stepping scheme.

7 SAMPLING
In order to simulate elastic solids with SPH we need to sample the solid volume with particles. We
assume that the solids are given as closed surface meshes or as signed distance fields (SDF). When
they are given as meshes we convert them into SDFs using the methods described by Koschier et
al. [2017]. Then we create a regular sampling by placing a regular grid inside the bounding box of
the object. The grid spacing is equal to the particle radius 𝑟 . For each grid node which is inside the
solid geometry we create a particle with radius 𝑟 . The inside or outside test can be easily performed
by querying the SDF.
A regular sampling can be used to simulate solids, however, it can lead to some problems.

First, fine surface details of the input geometry are not well represented by this type of sampling,
especially when the sampling is coarse. Moreover, fine features of the geometry may lead to co-
linear or co-planar particle neighborhoods, which are problematic because their kernel correction
matrices in Eq. (8) become singular and cannot be inverted.
In the following we propose a novel sampling technique that significantly alleviates these

problems. It is inspired by the blue noise sampling method presented by Jiang et al. [2015b] which
takes an initially dense regular sampling and refines it using an explicit SPH pressure solver. In
our work we use an implicit pressure solver for the sampling to avoid instabilities. The pressure
solve makes sure that we get a particle distribution which is beneficial for the pressure solver that
is used in the actual simulation. Jiang et al. [2015b] apply correction and cohesion forces to make
the surface particles coherent with the interior particles. In our work we use a different cohesion
force which aims at obtaining a homogeneous particle distribution. Moreover, we add an additional
adhesion force which pulls particles to the surface to get a better representation of fine features
of the geometry. Finally, this gives us better results than the method of Jiang et al. [2015b] as we
show in Section 9.

Starting with a dense regular sampling we refine it iteratively by applying the following position
changes Δx𝑖 :

Δx𝑖 = Δxpressure
𝑖

+ Δxcohesion𝑖 + Δxadhesion𝑖 . (31)
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The pressure term enforces a constant particle density 𝜌𝑖 which is computed as

𝜌𝑖 =
∑︁
𝑗∈N𝑖

𝑚𝑊 (x𝑖 𝑗 ), (32)

where𝑚 is the mass which is equal for all particles. The displacements are computed using the
constant density solve of the DFSPH method [Bender and Koschier 2017]

Δxpressure
𝑖

= −
∑︁
𝑗∈N𝑖

𝑚 𝑗

(
𝜅𝑖

𝜌𝑖
+
𝜅 𝑗

𝜌 𝑗

)
∇𝑊 (x𝑖 𝑗 ), (33)

where

𝜅𝑖 =
𝜌𝑖 (𝜌𝑖 − 𝜌0)

∥∑𝑗∈N𝑖
𝑚 𝑗∇𝑊 (x𝑖 𝑗 )∥2 +

∑
𝑗∈N𝑖

∥𝑚 𝑗∇𝑊 (x𝑖 𝑗 )∥2
. (34)

The cohesion displacement is similar to a spring force which enforces that the particles in each
neighborhood have the same distance of one particle diameter 𝑑 to each other

Δxcohesion𝑖 = −𝛽
∑︁
𝑗∈N𝑖

𝑉𝑗

(
∥x𝑖 − x𝑗 ∥ − 𝑑

) x𝑖 − x𝑗
∥x𝑖 − x𝑗 ∥

𝑊 (x𝑖 𝑗 ), (35)

where 𝛽 is the cohesion coefficient. This displacement improves the particle distribution especially
at the free surface, where the pressure solver cannot find an optimal solution due to the particle
deficiency problem.

If a particle x𝑖 is closer to the surface than the support radius, we compute the closest point on
the surface x𝑠 and add an attractive displacement

Δxadhesion𝑖 = −𝛾𝑉𝑖 (x𝑖 − x𝑠 )𝑊 (x𝑖 − x𝑠 ), x𝑠 = x𝑖 − Φ(x𝑖 )
∇Φ(x𝑖 )
∥∇Φ(x𝑖 )∥

, (36)

where 𝛾 is the adhesion coefficient and Φ(x𝑖 ) is the SDF with the convention that distances inside
of the solid are negative. The adhesion pulls particles which are close to the surface towards the
surface such that they align with fine features of the geometry.

In each iteration the positions are updated using the total displacements Δx

x𝑛+1 = x𝑛 + 𝜂 0.4𝑑
∥Δx∥∞

Δx, (37)

where 𝜂 is the CFL factor for which we use 0.25 as default value. After each iteration we apply
collision response displacements which prevent the particles from leaving the solid volume. Using
the SDF we project particles which are outside of the volume or closer to the surface than the
particle radius back such that the particles are exactly touching the surface from inside.
When the position change is small enough, we can stop the iterative process. Our SPH refine-

ment results in a high quality particle distribution which considerably reduces the occurrence of
degenerate configurations and particles with low numbers of neighbors.

8 MESH SKINNING
For rendering we want to skin a high resolution surface mesh to the particles of the deformable
solid. This can be performed during the simulation or as a post-processing step. In a preprocessing
step we determine the neighboring SPH solid particles for each vertex of the visualization mesh.
We also precompute the Shepard filter factors 𝑠𝑘 for each vertex x𝑘 of the visualization mesh

𝑠𝑘 =
1∑

𝑗∈N0
𝑘
𝑉 0
𝑗
𝑊 (X𝑘 𝑗 )

. (38)
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14 Kugelstadt et al.

Fig. 2. Comparison between our method (left) and the method by Peer et al. (right) in an experiment where
the bottom particles of a sampled bunny follow a prescribed motion. The material behavior obtained with
both methods is comparable.

Similar to the kernel correction matrix they are needed to obtain a 0th-order consistent SPH
interpolation of the function itself instead of the gradient [Reinhardt et al. 2019]. For every frame
of the simulation we can interpolate the vertex positions of the simulation mesh from the deformed
SPH particles as

x𝑘 = 𝑠𝑘

∑︁
𝑗∈N0

𝑘

𝑉𝑗

(
F𝑗X𝑖 𝑗 + x𝑗

)
𝑊 (X𝑖 𝑗 ). (39)

This interpolation can be evaluated very fast and it leads to much better visual results than surface
reconstructions with marching cubes.

9 RESULTS
In this section we discuss experiments to validate our method and to compare it with existing
solutions. All contributions of this publication were implemented in the open-source SPH frame-
work SPlisHSPlasH [Bender et al. 2021]. The solid-fluid solver relies on the already implemented
Divergence-Free SPH method [Bender and Koschier 2017] as the pressure solver, Volume Maps [Ben-
der et al. 2020] for the boundary handling, a Micropolar method [Bender et al. 2019] to counteract
numerical damping in the fluid, and the Analytic Polar Decomposition method by Kugelstadt [2018]
to extract the rotations from the deformation gradient.
We used Eigen [Guennebaud et al. 2021] for all the required linear algebra functionalities,

including the Cholesky factorization and the matrix-free CG solver. Important bottlenecks in all
the methods have been optimized using single precision AVX2 instructions whenever possible.

While other methods can be parallelized across particles, this is not the case for the Cholesky solve
in our method since it requires backward and forward substitution of the corresponding triangular
matrices. Despite those operations being hard to parallelize beyond using SIMD instructions, we
can still use parallelization to great extent by solving the linear systems concurrently per body and
per dimension (𝑥 , 𝑦 and 𝑧), since they are independent of each other.

Comparison with Peer et al. [2018]. We simulated a moving elastic bunny that follows a prescribed
trajectory and compare our method to the method by Peer et al. (see Figure 2). Unless otherwise
specified, the bunny is discretized with 32k particles of radius 0.0127m, using a Young’s modulus
of 1MPa, a Poisson’s ratio of 0.33 and 2ms time step size. All tests related to this experiment
were run on an Intel Core i7-7700K Processor with 4 physical cores and 8 threads at 4.20GHz. The
experiments always use all available cores.
In Table 1 we can see the benchmark results with varying particle sampling resolution. The

times correspond to the average runtime in milliseconds required per time step. We observe that
our method is superior in terms of performance to the method proposed by Peer et al. for all the
resolutions tested. The substantial speedup factor is a direct consequence of using a precomputed
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Particles Ours Peer Speedup nnzs Memory
et al. ×106 [MB]

4208 6.9 144 20.9x 2.52 19.28
8208 19.2 362 18.9x 7.59 58.01
16193 61.5 895 14.9x 27.80 212.16
31749 179 2102 11.7x 86.41 659.34
64055 507 5994 11.8x 284.88 2173.74

Table 1. Comparison of the moving bunny simulation runtimes and memory requirements with varying
number of particles. The table shows the average computation times per time step (in ms), the speedup
factors, the number of non zeros of the lower triangular matrix resulting from the Cholesky factorization and
the space needed to store it.

factorization instead of an iterative solver for the most time consuming step of the simulation:
the implicit solve of the stretching forces and the zero-energy mode correction. However, storing
the Cholesky factorization entails larger memory requirements than methods that use a pure
matrix-free iterative solver. The fact that the memory requirements scale superlinearly with the
number of particles is due to a higher fill-in of the triangular matrix obtained from the Cholesky
decomposition, which is also the reason behind the decreasing speedup factor. In any case, the
runtime gap is still very large, ranging from a speedup of 20.9x for the coarsest model to 11.8x for
the highest detailed one. Also, it is important to remark that only one factorization per unique
object has to be stored since the decomposition is computed at rest pose and it is invariant to rigid
translations and rotations.
For the sake of the comparison we followed the common practice in SPH of using a compact

support radius that results in approximately 30 neighbors per particle. However, we observed that
elastic solids can also be simulated with less neighbors. By using the closest 10 neighbors per
particle instead of the full neighborhood, we reduced our memory requirements by a factor of 2.5,
while obtaining visually identical results. Naturally, the runtime also improved, by a factor of 2, but
so does the method by Peer et al., therefore we do not include a comparison table for that case.
Table 1a shows the benchmark results for the moving bunny simulation with varying Young’s

modulus. There is a strong correlation between increasing material stiffness and the speedup factor
with respect to the method by Peer et al. This is can also be attributed to our direct Cholesky
solve which performs a fixed amount of operations. An iterative linear solver instead needs more
iterations to converge when the material stiffness is increased due to a larger condition number
of the system. Table 1b contains the results for the moving bunny simulation using different time
step sizes, which shows the same trend observed in the experiment with varying Young’s modulus.
When an iterative solver is used, employing larger time steps will require more iterations due to
poorer conditioning and a worse initial guess. Neither of those issues are relevant when a direct
solver is used. These two experiments highlight an important property of our solver, which is that
it has a very consistent runtime without sacrificing accuracy, in contrast to methods which use
iterative solvers.

Zero-energy mode correction. To showcase the importance of our implicit zero-energy mode correc-
tion, we carried out an experiment where the particles of a walrus model are randomized to induce
an initial deformed state (see Figure 3). We used 50k particles with a radius of 0.025m, a Young’s
modulus of 2.5MPa, a Poisson’s ratio of 0.33, a time step size of 1ms, 𝛼 = 1 in the case of zero-energy
mode correction and 𝛼 = 0 in the case without correction. By employing the zero-energy mode
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(a) Varying values of Young’s modulus

𝐸 [MPa] Ours Peer et al. Speedup

0.1 123 805 6.5x
0.5 155 1583 10.2x
1.0 179 2102 11.7x
5.0 255 3878 15.2x
10.0 338 4930 14.6x

(b) Varying time step sizes

Δ𝑡 [ms] Ours Peer et al. Speedup

1 134 1152 8.6x
2 179 2102 11.7x
5 301 4629 15.4x
10 479 8712 18.2x
15 433 12894 29.8x

Table 2. Comparison of the moving bunny simulation runtimes (in ms).

Fig. 3. Randomized particles experiment. From left to right: Initial deformed configuration, no zero-energy
mode control, zero-energy mode control. The original shape is recovered using our zero-energy mode correc-
tion.

correction, the original shape can be recovered even after such strong deformation. With correction
enabled, the elasticity solve required an average of 75.9ms per time step. This measurement and all
subsequent measurements were obtained using an Intel Core i9-9900KF processor with 8 physical
cores and 16 threads.
Our experience is that for modest values of 𝛼 , the impact the zero-energy mode correction has

on the dynamics has little bearing on the visual results. We illustrate this with a cantilever beam
experiment in the supplemental video. Four cantilever beams attached to a wall swing under gravity,
with 𝛼 = 0, 𝛼 = 0.01, 𝛼 = 0.1 and 𝛼 = 1, respectively. Although, we can observe a small change in
the swing frequency for increasing 𝛼 , the effect is subtle.

To further demonstrate the added stability provided by our implicit zero-energy mode correction,
we compare it to the explicit method proposed by Ganzenmüller [2015] and also used by Peer et
al. [2018]. For this, we used a twisted beam test (see Figure 4) which provides both large deformations
and high stresses. The beam is composed of 18k particles with radius 0.025m using a Young’s
modulus of 10MPa and a Poisson’s ratio of 0.2. We chose the value of 𝛼 (for our method) and
𝛼 ′ (for the method of Ganzenmüller) that gave the best simulation results. The simulation is run
with 1ms time steps. Our simulation required an average of 15.0ms per time step for the elasticity
solve. The elasticity solve using the method of Peer et al. (using the zero-energy mode correction of
Ganzenmüller) took on average 58.6ms per time step. While the explicit method by Ganzenmüller
fails to provide results without artifacts in such conditions, our implicit method produces stable
simulations with 𝛼 = 10.

Sampling. To showcase our novel sampling method, we first compare it with the method proposed
by Jiang et al. [2015b] for two complex models (see Figure 5). For our sampling, we used a cohesion
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Fig. 4. Twisted beam experiment. Our implicit zero-energy mode correction successfully produces a stable
simulation (left) while the explicit handling proposed by Ganzenmüller does not (right). Particles colored in
red experience very high velocity.

(a) Our method (b) Jiang et al. (c) Our method (d) Jiang et al.

Fig. 5. Comparison between our sampling method and the blue noise sampling method proposed by Jiang et
al. [2015b]. Our method generates a higher quality sampling for both the sculpture model with 215k particles
and the Standford armadillo model with 240k particles.

(a) 26k particles (b) 52k particles (c) 104k particles (d) 208k particles

Fig. 6. Dragon model discretized with our sampling technique using different amounts of particles.

parameter of 𝛽 = 4 and an adhesion parameter of 𝛾 = 0.2. It is immediately apparent that our
sampling technique achieves a more densely packed and higher quality particle distribution,
especially in complex areas like the armadillo’s nose and the sculpture’s wings. In the accompanying
video we compare our sampling technique with a regular sampling in simulations of an armadillo
model with different resolutions. When using regular sampling, artifacts occur at the ears and feet
due to degenerate particle configurations. The comparison shows that our method helps to reduce
the occurrence of such configurations and particles with low neighbor count. However, while our
method works well in practice and often avoids such configurations, there is no guarantee that
they can be avoided in every case.

In a second experiment we show our sampling technique for different number of particles with
the dragon model (see Figure 6). Even for lower resolutions we can see how the thin features, such
as the dragon eye and the scales, are preserved.
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Walrus funnel. In this experiment, we pushed eight walrus models through a tight funnel (see
Figure 1 left) to demonstrate the stability and robustness of our method. The high pressure is
handled by our simulator in several instances: in the interior of the elastic bodies, on the contact
area between them and also in the interaction of the elastic bodies with the walls of the funnel and
with the water. The runtime of the stretch solver remains constant during the simulation regardless
of the strong deformations. Our proposed mesh skinning was used to generate the surface triangle
meshes from the particle data, which also proved to work with large deformations.
We used 30k particles for each of the eight walrus models and 1.2M fluid particles, all of them

with a radius of 0.025m. For the material parameters, we used a Young’s modulus of 0.4MPa, a
Poisson’s ratio of 0.2, a density of 800 kg/m3 for the elastic objects and a density of 1000 kg/m3 for
the fluid. For this scene the elasticity solve required an average of 310.1ms per time step, consisting
of 231.9ms for the stretching part and 78.2ms for the volume part. In comparison, the DFSPH
pressure solve required an average of 877.8ms per time step.

Water park. In our final experiment (see Figure 1 right) we demonstrate the coupling of deformable
bodies, rigid bodies and fluids (including a highly viscous fluid) using the SPH framework. In
addition, we show that our method is capable of simulating many objects in a single simulation. A
total of 10 deformable and 4 rigid objects are emitted sequentially, slide down waterslides and drop
down the stairs into a bowl, where they interact with water and a highly viscous fluid. Since there
are only 2 unique deformable models in the scene, we also only have to compute and store two
unique factorizations. We used a total of 833k particles for the fluid and a total of 252k particles for
the deformable objects. We used a Young’s modulus of 0.75MPa and a Poisson’s ratio of 0.4 for the
elastic objects.

10 CONCLUSION
We have seen that our operator splitting approach to simulating elastic solids with SPH can
improve robustness and increase simulation speed for many scenarios. In some experiments, we
observed more than 20 times faster simulations compared to state-of-the-art. Even for scenes
where our operator splitting scheme is not applicable — for example if non-linear material models
are required — our implicit zero-energy mode suppression could benefit researchers developing
new SPH discretization methods. Similarly, our sampling algorithm produces high-quality particle
samplings for almost any purpose, and is therefore not limited to SPH simulators.

Our method relies on a precomputed sparse matrix factorization. This works very well for a wide
range of applications. However, as the number of particles per solid object grows very large, the
memory and runtime requirements associated with the direct solver eventually become prohibitive.
The point at which this occurs depends strongly on the problem and hardware, but our experiments
suggest that 64𝑘 particles is still a feasible number, and at this point also significantly outperforms
the iterative variant. With abundant memory, it is likely that the method remains effective for larger
particle counts, but at some point the time and space complexity of the method will effectively
place a bound on the number of solid particles per body that can be simulated efficiently. With the
intent to scale to larger systems, we wish to investigate a variant of domain decomposition in the
future, so that the factorization of the system matrix for each subdomain could be precomputed. In
addition, it would be senseful to explore an adaptive SPH discretization for the elastic bodies, so
that larger particles could be used in the interior and smaller ones at the surface, thereby reducing
the overall particle count needed to attain similar visual fidelity.
Finally, like previous methods that use a pressure solver for solid-solid and fluid-solid cou-

pling [Becker et al. 2009; Peer et al. 2018; Solenthaler et al. 2007], the final elastic response of the
solid is inconsistent with respect to Poisson’s ratio. Whereas the elastic solve correctly respects
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Poisson’s ratio, our pressure solver will treat the solid objects as incompressible under compression.
Due to pressure clamping, the pressure solver will not counteract expansion, however. One possible
remedy might be to adapt an implicit pressure solver that allows for compression for this purpose
(e.g., [Gissler et al. 2020; Weiler et al. 2016]).
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