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Abstract
While the application of the Smoothed Particle Hydrodynamics (SPH) method for the modeling of welding processes has
become increasingly popular in recent years, little is yet known about the quantitative predictive capability of this method.
We propose a novel SPH model for the simulation of the tungsten inert gas (TIG) spot welding process and conduct a
thorough comparison between our SPH implementation and two finite element method (FEM)-based models. In order to be
able to quantitatively compare the results of our SPH simulation method with grid-based methods, we additionally propose an
improved particle to grid interpolation method based on linear least-squares with an optional hole-filling pass which accounts
for missing particles. We show that SPH is able to yield excellent results, especially given the observed deviations between
the investigated FEM methods and as such, we validate the accuracy of the method for an industrially relevant engineering
application.

Keywords SPH · Electric arc welding · FEM · Particle-to-grid interpolation · Incompressible flow · Solidification
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a Acceleration

Am Magnetic vector potential
B Magnetic induction
FL Volumetric Lorentz force
fext External forces
J Current density
v Velocity
x Position

q̇ ′′′ Volumetric heat source
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λ Heat conductivity
Nx Neighboring particles of position x

ρ Density
ϕ Scalar electric potential
C Morphological constant
cp Specific heat capacity
h Specific enthalpy
Iw Welding current
m Mass
p Pressure
T Temperature
t Time
V Volume

1 Introduction

The smoothed particle hydrodynamics method (SPH) is a
Lagrangian discretization method, which has been investi-
gated in recent years for the simulation of manufacturing
processes, such as arc welding processes, see [16,17,20,34].
However, until now, the method has not been quantitatively
compared for the application to arc welding processes, to
assess its performance regarding calculation speed and com-
putational accuracy. Therefore, in this work, the open-source
implementation of the SPH method SPlisHSPlasH [4] has
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been extended to allow for the consideration of heat transfer
and respective boundary conditions as well as the influence
of external forces (such as the Lorentz force). In order to
study the applicability of our SPH method for the simulation
of arc welding processes, a test case was set up modeling
a simplified spot tungsten inert gas (TIG) welding process.
The test problemwas solved separately bymeans of our SPH
implementation and two different FEMmodels implemented
in Wolfram Mathematica (WM) [31] and COMSOL Multi-
physics, allowing for the simulation of weld pool formation
under the axisymmetric assumption.

For this comparison, the problem was idealized by using
constant material properties in the simulation and assuming a
flat free surface. Typically, this kind of problem iswell within
the strengths of Eulerian methods, whereas the SPH method
is known to have difficulties with strictly bounded domains.
While other works only consider the application of SPH to
the entire process, we aim to first establish the accuracy of the
SPH method in this idealized and bounded scenario. This is
done by rigorously comparing against known Eulerian meth-
ods, whose properties have beenwell-studied formany years.
The electromagnetic Lorentz force, which is the main driv-
ing force for the convective heat transfer in the melt pool,
was calculated in advance by the WM-Code. The resulting
vector field was exported and applied to the SPH simulation
as an axisymmetric external force, while it was solved within
COMSOL given the same boundary conditions.

We summarize our main contributions as follows:

– The proposition of a novel SPH algorithm for the sim-
ulation of the TIG spot-welding process, which utilizes
implicit time integration to significantly improve simu-
lation stability, and enables the use of larger time steps.

– The construction and implementation of a fast projec-
tion scheme for the integration of surface effects for SPH
fluids.

– Anovel particle to grid interpolationmethodwhich, com-
pared to existing methods such as Shepard interpolation,
is able to generate smoother fields while maintaining
very high interpolation accuracy. This is extended by a
smoothing algorithm in order to fill in holes of the inter-
polated grid due to missing particles.

– The quantitative comparison and in depth analysis of our
SPHmethodwith theWM-FEMand theCOMSOL-FEM
on the simulation of TIG spot-welding.

Overall, we are able to show remarkable agreement
between our SPH method and the two FEM methods, espe-
cially the solution of COMSOL, while at the same time being
entirely in the margin of error exhibited by the comparison
of the WM-FEM method and the COMSOL-FEM method.
This result is made all the more remarkable considering that
our SPH model solves the problem in full 3D, while both

WM and COMSOL solve the problem in 2D with rotational
symmetry.

1.1 Modeling of TIG spot-welding

The tungsten inert-gas (TIG) welding processes is a widely
applied welding process, that, while it has a lower productiv-
ity than gas metal arc welding processes, has its advantages
when it comes to high requirements onweld seamquality and
optical appearance. It is especially suitable for welding root
passes, thin metal sheets and materials prone to oxidation.
It is therefore often applied in chemical or food processing
plants.

For the present validation, the “spot-welding” variant of
the process is being studied for simplicity reasons, where
the welding torch position is fixed, and no filler material is
supplied. In addition, we consider high-frequency TIG (HF-
TIG), in which the electromagnetic Lorentz force, as a result
of the concentration of the arc, causes the formation of sig-
nificant flow patterns in the weld pool. For the usual process,
in which the distribution of electric current on the surface
of the liquid is typically less concentrated, the Lorentz force
is less dominant. Therefore, only the weld pool formation
caused by the heat flux from the arc and the influence of
the Lorentz force is studied, which is sufficient for a first
qualitative comparison with Eulerian methods.

To facilitate the comparison, the nonlinearities of the
material parameters, like latent heat and temperature-
dependent thermal and electrical conductivity or viscosity
were neglected, instead applying constant values for the rel-
evant material parameters, which allowed the Lorentz force
to be pre-computed. Also, since the modeling of the free
surface of the weld pool requires a special treatment in the
Eulerian framework, like volume of fluid (VOF) or level-
set, the free surface deformation and Marangoni effect were
neglected, although theirmodelingwould pose a great advan-
tage for the SPHmethod. The main focus of the present work
is therefore not to present an accurate modeling of the weld-
ing process, but rather to investigate the applicability of the
SPH method for the conditions present in this process and to
quantitatively compare its performance against the common
Eulerian methods, under the same conditions.

1.2 SPHmethods in welding simulation

The smoothed particle hydrodynamics (SPH) method was
originally proposed by Lucy [23] and Gingold and Mon-
aghan [13] in the field of Astrophysics. Since then it has been
adopted for many different applications, including the simu-
lation of weld pool dynamics. The mesh-free nature of SPH
enables the simulation of large deformations and free sur-
face motion and coupling of many physical processes, which
makes it an attractive method for many real-world problems.
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Das and Cleary [11] use SPH in three-dimensional arc
welding simulations in order to study temperature distribu-
tions, flow patterns and plastic strain in the filler material and
residual thermal stresses in the work piece.

Ito et al. [17] perform full simulations of TIG welding
using the SPHmethod and show results for different material
properties due to different sulfur contents and evaluate the
flow patterns and the shape of the weld pool.

Trautmann et al. [33] similarly perform weld pool simu-
lations using SPH for a TIG welding process. They consider
buoyancy, viscosity and surface tension as flowdriving forces
and the arc pressure, shear and thermal effect were parame-
terized using experimental studies. The penetration profiles
of three different welding currents were compared to exper-
imental results and show decent agreement.

A hybrid approach is investigated by Komen et al. [20],
who use a Eulerian grid and Lagrangian particles in conjunc-
tion in order to simulate gas metal arc welding (GMAW).
Molten metal is simulated by means of SPH, while the arc
plasma and gas are simulated on a grid. Themethods are then
weakly coupled and executed iteratively.

Komen et al. [19] also simulate the GMAW process under
consideration of droplet formation and compare the weld
pool shapes against experimental results. In order to more
easily visualize results, they use an ensemble averaging in
order to transfer particle data onto a regular grid.

These types of simulations are difficult to validate, as they
describe very complex systems with many interacting com-
ponents, and this is evident with Trautmann et al. [33] being
one of the few works which attempts to validate their results
using experimental data. In this paper, we chose instead to
compare our proposed SPH method against Eulerian simu-
lations, as a proof of concept which shows that SPH is able
to obtain very good agreement in the resulting weld pool
shapes, as well as temperature and velocity distributions. A
similar study has also been conducted by Jeske et al. [18],
which shows excellent performance of the SPHmethodwhen
compared against the Eulerian VOF method for the simula-
tion of droplet impacts in thermal spraying. This allows us
to justify the usage of SPH to obtain physically meaningful
results, also for cases that pose more difficulty for Eulerian
methods, for example when considering a free surface. The
performed investigations confirm the quantitative accuracy
of our proposed method, as well as the SPH method as a
whole for these kinds of applications.

1.3 Eulerianmethods in welding simulation

Eulerian methods are very common for the simulation of
arc welding processes and have been used since the advent
of computational welding simulation. A common difficulty
in these methods is the calculation of free surface flows.
There are several numerical approacheswhich are commonly

used for description of these free surface flows. They can be
divided into two main groups [32]. The first group includes
the so-called Front Capturing Methods (FCM) in which a
fixed Eulerian computational mesh is employed and a free
surface is ”expanded” along the volume of a certain layer.
The thickness of this layer corresponds to several lengths of
a computational cell. The most popular FCM are Volume of
Fluid (VOF) [14,15] and Level Set (LS) [9] methods.

There exist also a number of other approaches where the
free surface is considered as a sharp interface between two
media, e.g., [24,25,27]. There the Arbitrary–Lagrangian–
Eulerian method (ALE) is used, which allows for a deforma-
tion of the mesh, but it does not allow to solve problems with
significant topological changes, like flow-splitting. How-
ever, most common arc welding processes involve a melting,
detachment and an impingement of a filler material into a
weld pool. Additionally, the attachment of the electric arc
to the liquid electrodes is determined by thin sheaths (anode
and cathode sheaths), which are located exactly at the sur-
face of the liquid electrodes, and therefore a sharp definition
of the free surface is necessary to consider these phenom-
ena [26,30]. Therefore, neither the VOF/LS approach nor
the ALE approach are completely satisfactory to accurately
capture the process. Due to its strengths in modeling free
surfaces aswell as considering discontinuities and large topo-
logical changes and deformations, the SPH method became
an interesting approach for modeling arc welding processes.
However, little is yet known about the quantitative per-
formance for the calculation of conductive/convective heat
transfer compared to the established Eulerian methods, in
the context of arc welding processes.

2 Method

Firstly, the following table summarizes the unique symbols
used in this document. Please refer to this table when the
meaning of symbols does not become clear from the imme-
diate context.

In this section, we briefly describe our SPH model and
discretization of the governing equations for incompressible
weld pool dynamics. The SPH method discretizes mass at
particles in space. These particles are advected and tracked
through time and carry associated field quantities with them.
The SPH method uses interpolation in order to compute
unknown quantities and derivatives needed to solve partial
differential equations (PDEs). An arbitrary scalar quantity
A(x) can thus be computed by interpolation from surround-
ing particles

A(x) =
∑

j∈Nx

Vj A jW (x − x j ; h), (1)
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where W (x − x j ; h) is a compactly supported weighting
function around position x ∈ R3 with smoothing length h.
The term

∑
j∈Nx

denotes a summation over the neighboring
particles j , with position x j and volume Vj , around position
x, which lie within the compact support radius of weight-
ing functionW (x). Derivative operators are typically shifted
to the kernel function W which significantly simplifies the
discretization of PDEs. Formore information about the back-
ground of the SPHmethod, the reader is referred to Koschier
et al. [21] and Price [28].

2.1 Fluid flow

The Navier–Stokes equations for incompressible fluid flow
are given by

ρ
Dv

Dt
= −∇ p + μ∇2v + fext. (2)

Here, ρ denotes the fluid density [kg m−3], v the velocity [m
s−1], p the pressure [N m−2], μ the dynamic viscosity [Pa s]
and fext the external volumetric forces [N m−3]. In addition
to the Navier–Stokes equations, the continuity equation has
to be fulfilled

Dρ

Dt
= 0, (3)

which states that there must be no change in density, a nec-
essary condition for incompressible fluids. This equation is
also often used in convective form which relates the local
density change to the divergence of the velocity field.

∂ρ

∂t
= −ρ∇ · v = 0 (4)

The equations are solved using operator splitting. First the
density of all particles i, ∀i ∈ [1, N ], where N is the total
number of particles in the simulation, is computed using the
SPH interpolation function

ρi =
∑

j∈Ni

m jWi j , (5)

where Wi j is shorthand for W (xi − x j ; h). Afterward, the
acceleration due to pressure forces is computed using the
divergence-free SPH (DFSPH)method, as presented by Ben-
der and Koschier [5]. Using this method, a set of momentum
conserving forces is obtained which guarantees both con-
stant density as well as a divergence-free velocity field.
Other established methods, such as advection of density
using the continuity equation [11] or explicit computation
of pressure forces using a state equation [3] may suffer from
volume losses in the former case and typically require small

simulation time steps for the latter in order to ensure incom-
pressibility. In contrast to this, we have found DFSPH, which
implicitly computes pressure forces, to perform very well in
all conditions, and it enabled the usage of large time steps
while still remaining stable.

The viscosity term is also computed implicitly using the
viscosity model by Weiler et al. [36]. This method computes
accelerations

ai = vt+1
i − vti

�t
(6)

due to viscous forces, by solving for vt+1
μ in the following

equation:

vt+1 = vt + �t
μ

ρ
∇2vt+1. (7)

This can be written as a square symmetric positive def-
inite linear system and solved efficiently in a matrix-free
context using the conjugate gradient method. To the best of
our knowledge, implicit viscosity solvers have not yet been
employed for the simulation of weld pool dynamics, and we
have found this model to also be very stable when using large
time steps. Further discussion is given in Sect. 4.

The remaining forces in Eq. (2) which are part of the exter-
nal volumetric force are theLorentz force and theMomentum
Sink which accounts for the morphological material change
during solidification and melting.

The Lorentz force is computed in advance of the simula-
tion and interpolated bilinearly from a grid onto the particles.
This is analogous to the widely used approach for calculat-
ing Lorentz forces in arc welding process simulation, as for
example used by Cho and Na [10], where also the stationary
analytical solution developed by Kou and Sun [22] is used to
calculate the Lorentz forces.

The Momentum Sink is computed using the Darcy-term
method, which is a common approach in the literature to
model the solidification of pure metals [7] and alloys [35],
which is also a common approach in arc welding simulation,
see e.g., [10]. Themethod adds an acceleration to theNavier–
Stokes equation which has a strong flow inhibiting effect on
the fluid, once the temperature of the fluid reaches below
melting temperature Tl

aporosi t y = −vC(1 − fl(T )) (8)

fl(T ) =
{
1 T > Tl
0 T ≤ Tl .

(9)

In the above equations, C denotes the morphological con-
stant and fl(T ) is the temperature-dependent liquid fraction,
which is modeled using the heaviside function. The values
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Algorithm 1 Fluid Solver
1: procedure FluidSolve
2: SolveDivergenceFreeVelocity(i) � [5]
3: SolveViscosity(i) � Eq. (7)
4: for all particles i do
5: SolveMomentumSink(i) � Eq. (12)
6: end for
7: SolveConstantDensityPressure(i) � [5]
8: �t ← ComputeCFLTimeStep( )
9: for all particles i do

10: vi ← vi + �t
(
ai + fext

ρ

)

11: xi ← xi + �tvi
12: end for
13: end procedure

for C are often very large, resulting in very large decelera-
tion as soon as T ≤ Tl , so large in fact that simulations using
explicit time stepping can become unstable. We remedy this
by constructing an algebraic equation which computes the
acceleration using the projected velocity of the next time
step as follows:

aporosi t y = vt+1 − vt

�t
= −vt+1C(1 − fl(T )) (10)

vt+1 = vt
1

1 + C�t(1 − fl(T ))
. (11)

The acceleration is then computed by inserting the expression
for vt+1

aporosi t y = vt

�t

(
1

1 + C�t(1 − fl(T ))
− 1

)
. (12)

This semi-implicit formulation allows the usage of larger
time steps in the simulation without causing instabilities. It
should be noted that using large time stepswith implicit Euler
integration is known to add a significant damping effect,
which diminishes the effect of the Darcy-term. This can be
controlled by carefully determining a time step in the order
of magnitude of C−1 which is typically still very small,
O(1 × 10−8s to 1 × 10−4s), but not necessarily as small
as required for explicit integration.

The main fluid driving forces in our simplified model of
TIG spot welding is the Lorentz force, while the fluid behav-
ior is otherwise significantly influenced by viscosity and
the melting of solid material. The extensive use of implicit
solvers enables us to have stable simulations when using
large simulation time steps as well as large morphological
constants C .

Finally, an overview of our SPH fluid solver is presented
in Algorithm 1.

2.2 Heat transfer

Heat transfer is computed using the Fourier equation

D(ρcpT )

Dt
= ∇ · (λ∇T ) + q̇ ′′′, (13)

whereρ denotes thematerial density [kgm−3], cp the specific
heat capacity [J kg−1 K−1], T the temperature [K], λ the
thermal conductivity [W K−1 m−1] and q̇ ′′′ the contribution
from volumetric heat sources [W m−3]. For the purpose of
our SPH simulation, wemake use of the relationship between
specific enthalpy h [J kg−1] and the temperature when the
observed medium is incompressible

h(T ) =
∫ T

0
cp(T )dT . (14)

In this formulation, cp may also be a function of temperature,
taking into account, e.g., the latent heat of melting. Resulting
in the following formulation in terms of specific enthalpy

h
Dρ

Dt
+ ρ

Dh

Dt
= ∇ · (λ∇T ) + q̇ ′′′. (15)

Dρ
Dt = 0 is already enforced by the constant density com-
ponent of the implicit pressure solver so that this term
immediately drops out. The above equation is discretized
using SPH and explicit Euler time integration, resulting in
the following discrete equation for the fluid particle with
index i

ρi
ht+1
i − hti

�t
= ∇ · (λ∇T )ti + q̇ ti

′′′. (16)

The heat conduction term is discretized by

∇ · (λ∇T )i =
∑

j∈Ni

m j

ρ j

4λiλ j

λi + λ j
(Ti − Tj )

∇iWi j · ri j
||ri j ||2 (17)

as proposed by Brookshaw [8] and is well-documented in
the literature, e.g., by Trautmann et al. [33] and Das and
Cleary [11]. It should be noted that the thermal conductivity
λi = λ(Ti ) is generally a function of temperature and ri j =
xi − x j .

2.3 Heat sources

In this work, a surface heat source q̇ ti
′′′ with constant power

and Gaussian distribution was used. There are many avail-
able surface classification techniques available; however, the
more accurate they are, the more computationally expensive
they typically become. In this work, it was found that the cov-
erage vector technique, as presented by Barecasco et al. [2],
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n̂i

ϕ xi − xj n̂i

xi − xj

Fig. 1 Surface particle classification using Eq. (20). The green particle
is classified as a surface particle, while the red particle is classified as
an interior particle

works quite well, since this results in almost flawless classi-
fication for the initial grid configuration and remains stable
throughout. The normalized coverage vector n̂i for particle
i is computed as

ni =
∑

j∈Ni

(xi − x j ) (18)

n̂i = ni
||ni || . (19)

This vector points in the direction of the lowest particle den-
sity in the particle neighborhood. Particle i is classified as a
surface particle, if there is no other particle j in the direction
of n̂i in a cone with an angle of

ϕ < cos−1
(
n̂i · (x j − xi )

||x j − xi ||
)

,∀ j ∈ Ni . (20)

The angleϕ is set to a fixed value.Wehave observed excellent
classification results using an angle of ϕ = 35◦. Here, Ni

contains the indices of particles in the compact support radius
of particle i . Surface classification using the coverage vector
is shown in Fig. 1.

The particle shaded in green is classified as a surface par-
ticle, because no other particles are present in a cone of ϕ

around the coverage vector n̂i . The red particle is classified
as an interior particle since there are two other particles in
the cone around the coverage vector.

For the particles classified as surface particles, we propose
the following fast projection method in order to compute the
influence of a directed heat source. In general, however, this
method could also be used to apply arbitrary boundary con-
ditions at the fluid surface. The heat source is computed by
additionally computing the visibility of the surface particles
from an area heat source. This is shown in Fig. 2.

All surface particles outside of the region which lies in
normal direction of the area source (white area) are discarded.
Then, all remaining surface particles are checked for other
neighboring particles in a cone around the vector in normal

Fig. 2 Projection of an area heat source onto previously detected sur-
face particles. The green particles are visible, the yellow particle is
discarded by a depth test, and the red particles are invisible to the heat
source

direction to the source. The green particles are eventually
classified as being visible from the surface, while the red one
is covered by a neighboring particle in the direction of the
source. The yellow particle would be classified as visible, but
can be discarded by an additional depth test.

In this work, the heat source is parameterized as a Gaus-
sian and in order to ensure constant power of the heat source,
weighted normalization is applied using the previously com-
puted Gaussian weights. This results in the expression

q̇ ′′
i,sur f ace = Psourcewi

3

πr2HS

exp

(
−3

||xi − x0||2
r2HS

)
, (21)

where rHS is the standard deviation, x0 the center of theGaus-
sian and wi the weight which is needed for normalization of
the total power to the target power Psource.

The subscript i, sur f ace denotes only the particles which
have in the previous step been identified as surface parti-
cles and have been determined to be “visible” from the heat
source, while q̇ ′′ denotes the heat source as Watts per unit
area [Wm−2].

In our TIG simulation setup, all boundaries are adiabatic
and do not require any special handling for heat transfer.
Since heat can only be conducted within the material itself,
the SPH formulation is adiabatic by construction. Finally,
the enthalpy in terms of the temperature (and vice versa)
is precomputed by integration of Eq. (14). Our heat solver
algorithm is outlined in Algorithm 2, while the full algorithm
containing both the heat solver and fluid solver is shown in
Algorithm 3.
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Algorithm 2 Heat Transfer Computation
1: procedure ComputeHeatTransfer
2: for all particles i do
3: ComputeTemperature(i) � Eq. (14)
4: end for
5: for all particles i do
6: ClassifySurface(i) � Eq. (20)
7: end for
8: for all particles i do
9: ApplyHeatSource(i) � Eq. (21)
10: end for
11: for all particles i do
12: ComputeHeatConduction(i) � Eq. (17)
13: end for
14: for all particles i do
15: ExplicitEulerIntegration(i) � Eq. (16)
16: end for
17: end procedure

Algorithm 3 SPH Solver
1: procedure SolveFluidAndHeatConduction
2: t ← tstart
3: while t < tend do
4: ComputeHeatTransfer( ) � Algorithm 2
5: FluidSolve( ) � Algorithm 1
6: t ← t + �t
7: end while
8: end procedure

2.4 Particle to grid transfer

For scientific evaluations, it can be quite cumbersome to use
particle data, since many visualization techniques, i.e., line
plots, contour plots, stream lines, etc., rely on the ability to
interpolate the underlying data at any point in space. While
this can be achieved by using the common SPH summation
from Equation (1), this method suffers from the issue of par-
ticle deficiency at fluid boundaries where the interpolation
quality will decrease rapidly. The ability to reconstruct con-
stant functions can be restored by using normalization, as is
also done by Komen et al. [19], which often yields satisfac-
tory results in practice. This normalized SPH interpolation is
also often called Shepard interpolation in the literature and
simply normalizes Eq. (1)

A(x) =
∑

j∈Nx
Vj A jW (x − x j ; h)

∑
j∈Nx

VjW (x − x j ; h)
, (22)

which locally restores the property of accurately representing
constant functions.

Nevertheless, we propose a novel method which does not
rely on the SPH kernel for interpolation of particle data
onto a grid and provides an efficient and accurate method of
transferring the underlying continuous field from the particle
nodes to specific grid nodes. Our proposedmethod overlays a
regular grid (in theory this could be any kind of unstructured

grid) and solves a linear least squares problem for the values
at the grid nodes

min
N∑

i=1

( f (xi ; θ) − yi )
2, (23)

where f (xi ; θ) is the function which linearly interpolates the
values at the nodes of the grid θ = (θ0, . . . , θM ) ∈ RM to
the position xi of particle i and yi is the field value at particle
i . The normal equations for this problem are given by

MTMθ = MT y Mi j = wi j . (24)

The matrixM ∈ RN×M has as many rows as there are parti-
cles and asmany columns as there are grid nodes.wi j denotes
the linear interpolation weight of particle i from grid node
j . Matrix M is very sparse and is solved using the matrix-
free conjugate gradient solver of Eigen. Since there are not
always particles in every grid cell, the matrixM is extended
by a set of identity equations for grid nodes where there are
no particles in the vicinity and the right-hand side is equal to
a default value for the interpolated field.

Using this, or other interpolation methods, and depending
on the desired grid resolution, it may be possible for gaps to
appear in the interpolation grid, where no particles contribute
to the interpolated value. In order to avoid this, we perform
a smoothing step where the values in the missing cells may
be filled in by using Laplacian smoothing

�θ = 0. (25)

Other smoothing kernels, e.g., Bi-Laplacian or Gaussian ker-
nels, may also be used, but we have found the simple 7-point
3D Laplacian kernel to work well for our purposes. To do the
smoothing step, we implemented a fast marching algorithm
to select the grid nodes which are directly adjacent to grid
nodes with neighboring particles. For the smoothing oper-
ation, the already computed grid values serve as boundary
conditions such that gradients from the already computed
fields are preserved and the gaps can be filled in with mean-
ingful values. The actual boundary of the enclosing grid is
treated using zero-gradient boundary conditions. In practice,
we frequently used a grid size equal to the particle diameter
and smoothed for up to a distance of 1 to 3 nodes. This yielded
very good results in the regions with gaps as is discussed in
the evaluation of Fig. 7.

In comparison with the usual interpolation technique
which uses SPH to average local information at a specific
position, our method attempts to approximate the underlying
field globally and continuously over all particles. In practice,
we have found this to result in smoother interpolated fields
while at the same time having equal or better approxima-
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tion quality. A brief evaluation of our interpolation method
is shown in Sect. 3.1.

2.5 Boundary conditions in SPH

Boundary volumes are taken into account using the analyt-
ical approach for Volume Maps by Bender et al. [6]. As
the name suggests, the method computes analytical volume
contributions of solid objects to the SPH integral as a pre-
computation step, so that it can be evaluated using a simple
lookup and polynomial interpolation. As discussed in the
original paper, this method has the advantage of accurately
representing solid objects and boundary conditions, and the
resulting surface varies smoothly with position. When the
boundary is sampled using particles, e.g., using the method
of Akinci et al. [1], particle movement becomes bumpy due
to the unevenness of the discretization.

Using VolumeMaps, boundaries can simply be integrated
into the typical SPH summation of Eq. (1) resulting in the
following equation:

Ai =
∑

j∈N f
i

V f
j A f

j Wi j + V b
i Ab

i Wib, (26)

where the superscript f denotes contributions from fluid par-
ticles and b from boundary objects. The volume V b

i denotes
the precomputed volume occupied by the boundary in the
compact support radius of particle i , while the weight Wib

is computed for a representative particle on the surface of
the boundary. Finally, Ab

i is chosen to comply with pre-
scribed boundary conditions, e.g., being set to a fixed value
for Dirichlet boundary conditions. For our model, the Vol-
ume Maps boundaries are mainly used in order to extend the
fluid domain in order to avoid particle deficiencies for the
computation of density and pressure.

We use free slip boundaries at all surfaces, meaning that

∂vt

∂n

∣∣∣∣
∂	

= 0, (27)

where ∂	 denotes the entirety of the bounding cylinder (see
Fig. 3), while ∂/∂n denotes the derivative in normal direc-
tion. The velocity in tangential direction to the surface is
denoted by vt . This does not require any special treatment
in the SPH formulation. Additionally, we impose adiabatic
boundary condition for the heat equation

∂T

∂n

∣∣∣∣
∂	

= 0, (28)

for the entire boundary, while additionally adding a source
term at the top surface (line DC in Fig. 3) of the boundary

q̇ ′′
∣∣∣∣
DC

= q̇ ′′
surface, (29)

which is computed using the heat source from Equation
(21). The adiabatic condition is also satisfied by construc-
tion, while the method described in Sect. 2.3 is used to apply
the heat sources.

2.6 2D-FEMmodel

2.6.1 Model of electromagnetic processes in COMSOL

For the magnetostatic simulation by means of COMSOL
Multiphysics,we use the so-called Am−ϕ formulationwhich
gives equations for the magnetic vector potential Am and the
scalar electric potential ϕ

�Am = −μ0 J, (30)

B = ∇ × Am, (31)

∇ · (σ∇ϕ) = 0. (32)

Here, J and B are the current density and magnetic induc-
tion, respectively, μ0 is the permeability of vacuum and σ is
the electrical conductivity. The volumetric Lorentz force is
governed by

FL = J × B. (33)

The governing equations, Eq. (30) and Equation (32), are
subject to the boundary conditions

n × Am

∣∣∣
AB

⋃
BC

⋃
CD

= 0, (34)

∂ϕ

∂r

∣∣∣
BC

= 0, (35)

ϕ

∣∣∣
AB

= 0, (36)

σ
∂ϕ

∂z

∣∣∣
CD

= Jn, (37)

where Jn denotes the current density distribution along sur-
face CD.

2.6.2 Model of electromagnetic processes in WM

The model of electromagnetic processes is based on the sta-
tionary magnetic field diffusion equation [12] which in the
case of axial symmetry reads as follows:

1

r

∂

∂r

(
r
∂Bθ

∂r

)
+ ∂2Bθ

∂z2
− Bθ

r2
= 0, (38)
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Fig. 3 Computational domain for both SPH and FEM simulations. The
FEM methods solve the problem in rotational symmetry in the ABCD
plane, while SPH considers the full cylinder by explicit rotation of
ABCD around the denoted symmetry axis

where Bθ is an azimuthal component of magnetic induction.
From Ampere’s law

μ0 J = ∇ × B, (39)

the next boundary conditions for Eq. (38) can be readily
obtained

Bθ

∣∣∣
CD

= μ0

r

∫ r

0
Jn(s)sds, (40)

Bθ

∣∣∣
BC

= μ0 Iw
2πLr

, (41)

∂Bθ

∂z

∣∣∣
AB

= 0. (42)

Here, Lr is the radius of computational domain (see Fig. 3),
while Iw denotes the welding current. Under the given mag-
netic field, the current density and Lorentz force are obtained
from Eq. (39) and Equation (33), respectively.

2.6.3 Numerical procedure in COMSOLMultiphysics

The governing equations in COMSOL are solved using the
finite element method (FEM). For temporal discretization,
the BDF (backward differentiation formula) was applied,
with default settings of COMSOL 5.6. The spatial discretiza-
tion can be seen in Fig. 4. Here, the nodes used quadratic
shape functions for temperature, velocity, magnetic strength
and for scalar and vector potential. The shape functions uti-
lized for the solution of the pressure were linear. The sparse
direct solver PARDISO was selected to solve the resulting
system of linear equations.

Fig. 4 COMSOL mesh as mixture of quadrilaterals and triangles

Fig. 5 FEM mesh as Quad9 quadrilaterals. The Navier–Stokes equa-
tions are solved in the region of interest 	 = {0mm < r <

3.5mm, 0mm < z < 5mm}, while the heat transport is analyzed in
whole domain

2.6.4 Numerical procedure in WM

The governing equations are solved using the Galerkin finite
element method (FEM) [37]. A characteristic-based scheme
[38] was used in temporal discretization of Eqs. (2) and (13)
along with FEM approximation in space, see Fig. 5. Nine
node biquadratic shape functions are employed for veloc-
ity, temperature and magnetic fields, whereas the pressure is
approximated by four node bilinear shape functions. Such
a choice of mixed interpolation for velocity and pressure
fields provides stability of the numerical procedure [37]. The
sparse direct solver PARDISO [29] was employed to solve
the resulting systems of linear equations. All the numerical
algorithms were implemented in the Wolfram Mathematica
Language (WM).

3 Results

3.1 Grid interpolation

Asnoted before,while all following evaluations could techni-
cally be done on particle data alone,many existing evaluation
functions and programs, e.g., ParaView and Tecplot, are tai-
lored to grid structures and unstructured meshes. This makes
the usage of regular and unstructured meshes very appealing
for quantitatively evaluating and comparing scientific com-
putations. To this end, we compare the interpolation accuracy
using Naïve SPH interpolation (see Equation (1)), Shepard-
corrected SPH interpolation (see Eq. (22)) and our proposed
least-squares linear interpolation (see Eq. (23)).
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Fig. 6 Comparison of particle to grid interpolation techniques

Figure 6 shows a comparison of the different interpola-
tion approaches. Each method has been used to compute the
particle to grid transfer of the same particle data. The error
is computed by interpolating these grids back to the original
particle positions and computing the mean absolute error.
The error is determined by evaluating the error at the par-
ticle positions using linear interpolation from the computed
grids. The underlying particle data are the velocity field of
a randomly selected frame of a fluid dynamics simulation in
motion, but the same trend is visible regardless of which field
is approximated. The regular grid spacing dspacing is deter-
mined by a multiple ngrid of the SPH particle radius rpart

dspacing = ngrid · rpart . (43)

The resolution of the grid shown in Fig. 6 is then computed
as the inverse of this factor, n−1

grid , i.e., a higher resolution
corresponds to a smaller grid spacing dspacing and thus a
larger number of total grid nodes.

The Shepard interpolation was evaluated using a varying
factor for the SPH compact support radius depending on the
factor for the grid spacing hshepard = dspacing · nshepard . It
can be seen that both our proposed least-squares interpolation
as well as Shepard interpolation using the grid spacing with
a factor of 1 and 2 as compact support radius perform the
best in this comparison, for grid spacings larger than rpart .
Naïve SPH interpolation performs best when the compact
support radius is equal to the compact support used in the
actual simulation. It also suffers from worse interpolation
quality due to particle deficiency at the surface, leading to
large errors in the interpolation.

For finer resolutions, it can be seen that the least-squares
interpolation performs best in all cases, while the Shepard
interpolation with a factor of 2 and subsequently a factor of 4
have a comparable error when a grid spacing of 0.5rpart and
0.25rpart is used respectively. From this comparison we con-
clude that both Shepard interpolation, aswell as our proposed
least-squares interpolation can work very well for particle
data. The interpolation quality of our least-squares approach

Fig. 7 A comparison of our proposed least-squares interpolation
method using smoothing of one surrounding grid node (left) and Shep-
ard interpolation (right) without smoothing

becomes more apparent when the grid-resolution increases
as well.

Another advantage of our interpolation is shown in Fig. 7,
where the particle to grid transfer of the temperature field
using two different interpolation methods is shown. The left
half shows the interpolation of our proposed least-squares
method and smoothing for up to one neighboring grid node,
and the right side shows Shepard interpolation.

From this qualitative comparison, it is possible to see that
while the values are almost identical in the entire domain, the
least squares interpolation results in a much smoother field.
This is especially visible at the temperature contour lines
within the black border. In this figure the advantages of our
smoothing approach can also be observed.While the top right
of the Shepard interpolation shows gaps in the interpolation
due to missing particles, the left side shows that this part
(top left) can be filled in with very plausible values using
the aforementioned Laplacian smoothing. While the filled
in values should be treated with care, this kind of filling in
allows the consistent reconstruction of fixed domains from
particle data.

For all following particle to grid interpolations, we use our
least-squares interpolation with a grid resolution of twice the
particle radius, because this is the same resolution as for
the WM and COMSOL simulations. In addition, we apply a
smoothing of up to 3 particle nodes, although only for times
close to the end of the simulation is the full smoothing length
actually needed. At this resolution, it can be expected to incur
amean absolute error in the interpolated data of 4% for scalar
values.
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Table 1 Material parameters of high-alloy steel

Property Unit Value

Density ρ kgm−3 8100

Surface tension γ Nm−1 disabled

Viscosity μ Pa s 0.004

Thermal conductivity λ Wm−1K−1 22.9

Electrical conductivity σ S m−1 106

Heat capacity cp J kg−1K−1 800

Melting temperature Tl K 1773

C from Eq. (12) s−1 3.7 × 104

Table 2 Domain parameters

Property Unit Value

Radius of the cylinder Lr m 15 × 10−3

Height of the cylinder Lz m 5 × 10−3

Initial temperature K 300

Heat source center x0 m (0, 6 × 10−3, 0)

Heat source dist. radius rHS m 2.7 × 10−3

Heat source power Psource W 1213.8

Total current Iw A 140

External forces fext N m−3 See Fig. 8

3.2 Simulation parameters

To allow for a first validation, the relevant material parame-
ters have been simplified to constants, see Table 1. It should
be mentioned that the morphological constant C is usually
given without division over the density, where it would eval-
uate as C = 3 × 108kgm−3 s−1.

The properties are applied homogeneously over the calcu-
lation domain, which consists of a rotationally symmetrical
cylinder, as shown in Fig. 3. The details of the computational
domain are given in Table 2. It is important to note that the
SPH domain is realized in full 3D, while the FEM domain is
just considering a 2D plane with rotational symmetry around
the symmetry axis AD.

The external Lorentz force field due to electromagnetic
forces is pre-computed in advance of the fluid-flow simu-
lation, according to Eq. (33) in order to be able to use the
same external forces for both the SPH and WM simulations.
The magnetic strength field is obtained from the solution of
Eq. (38) bymeans of the FEM.From these, theLorentz forces
FL are computed by Eq. (33), and are then included as exter-
nal volumetric forces fext in the Navier–Stokes equation Eq.
(2), by a rotation of the 2D plane around the symmetry axis

fext = FL . (44)

Fig. 8 Lorentz force in the region of interestwith the direction indicated
as an arrow and the magnitude indicated as the underlying color. (Color
figure online)

The vector field of the forces is calculated from the applied
electric current density Jn(s) in Eq. (40), distributed as a
Gaussian along the DC boundary (see Fig. 3) in the same
way that the heat source distribution is defined in Equation
(21), but with the welding current Iw

Jn(s) = Iw
3

πr2HS

exp

(
−3

||xi − x0||2
r2HS

)
. (45)

Figure 8 shows the Lorentz force in the region of interest that
was pre-calculated with the WM-code, according to Sect.
2.6.2 as the electrical conductivity was constant. The result-
ing force field was then applied in rotational symmetry on
the SPH particles. The Lorentz force for COMSOLwere cal-
culated within the software according to Sect. 2.6.1 and they
were found to be nearly identical in the region of interest,
showing only small deviations far away due to the difference
of the system of equations (c.f. Sects. 2.6.1 and 2.6.2).

The convergence of the simulation was achieved using the
numerical parameters listed in Tables 3 and 4. The SPH par-
ticle diameter is chosen to be equivalent to the element size
in the region of interest for the Wolfram Mathematica and
COMSOL FEM simulation. The WM method and the SPH
method use adaptive time integration using theCFL criterion,
with identical maximum time step sizes but different factors.
The WM method made use of both second-order consistent
implicit time integration as well as higher-order finite ele-
ment basis functions. As such, the CFL factor in SPH was
chosen heuristically to be smaller, since there a only first-
order implicit time integration schemewith operator splitting
is used. For COMSOL, the backward differentiation formula
(BDF) was used for temporal discretization, with default
parameters.

The SPH simulation was run on a compute node with 36
cores and took 86 h for 2.5 s of simulated time. The WM
simulation was run on a 4 core machine and completed in
roughly 9 h. Finally, the COMSOL simulation was run on a
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Table 3 Numerical parameters of SPH

Property Unit Value

SPH particle radius m 5 × 10−5

Maximum time step s 1 × 10−4

CFL criterion – 0.1

Table 4 Numerical parameters of WM

Property Unit Value

Element size in region of interest m 10 × 10−5

Maximum time step s 1 × 10−4

CFL criterion – 0.5

compute node with 48 cores and completed in approximately
20 min. It is strongly noted that these computations are not
at all comparable between one another. For one, the simu-
lations were run on very different hardware. Additionally,
the SPH method was run in full 3D which has significantly
more degrees of freedom than the rotationally symmetric
WM and COMSOL simulations. In the SPH simulation, we
use roughly 3.5 million particles with 3 degrees of freedom
for all vector quantities, while the meshes of the COMSOL
and WM simulation have roughly 10 k grid nodes with 2
degrees of freedom for all vector quantities. As such the num-
ber of degrees of freedom of the SPH simulation is ≈ 500
times larger than for the other simulation methods. In our
opinion, this shows good performance and scaling of our
SPH method.

3.3 Simulation results

3.3.1 Conductive heat transfer

Before the quantitative comparison of forced convective and
conductive heat transfer is performed, a comparison without
the external forces fext was made, i.e., without any fluid
movement and therefore no convection. As can be seen from
the shape of the melting temperature iso-contours in Fig. 9,
the calculation for the conductive heat transfer was in perfect
agreement between SPH, WM and COMSOL for all time
steps. Therefore, we consider the purely conductive part of
the heat transfer module in SPH as validated.

3.3.2 Forced convective and conductive heat transfer

Quantitative comparison The dimensions of the melt-pool
over the course of the simulations are shown in Fig. 10, for
the case when the external forces were set to the Lorentz
force as shown in Eq. (44). The weld pool dimensions are
computed by solving a nonlinear algebraic equation for the

Fig. 9 Melting temperature (1773K) iso-contours at different times for
SPH, WM and COMSOL without Lorentz force fext = 0 Nm−3, i.e.,
pure heat conduction

position of themelting front.Overall both characteristicmelt-
pool dimensions, the depth and the width, show very good
agreement between all three methods and exhibit a similar
development over time. The depth of the weld pool for the
SPHandCOMSOLsimulationmatch almost perfectly across
all time steps. During the first t < 0.5 s, the FEMweld pool is
deeper, but afterward agreement between all threemethods is
again observed for t > 0.5 s. Starting at roughly t > 1.25 s,
the development of the depth increases for the WM solver,
reaching full penetration about �t ∼ 0.1 s earlier than the
SPH method, while the COMSOL solution is a bit slower,
reaching full penetration �t ∼ 0.03 s later. Also the depth
of the COMSOL solution does not seem to develop entirely
smoothly, displayingminor kinks at t = 1.35 s and t = 1.5 s.

As the interpolation of theSPHsolution into a grid has lim-
itations close to the boundaries, since fewer particles were
present to interpolate the results, the width was not com-
puted exactly on the boundary, but 0.5mmbelow the surface.
While we use our proposed interpolation method to obtain a
plausible filling in of the gap, a better result is still obtained
when looking at the weld pool width a short distance into the
domain. Here, thewidthmatches up nearly perfectly between
all three solver methods, with aminor deviation for t < 0.5 s,
where the COMSOL solution appears right between the SPH
and WM solution.

In Fig. 11, the melting temperature iso-contour can be
seen, at characteristic time steps of the process for these
developments of 0.3 s, 1.0 s and 1.6 s. These characteris-
tic times were also chosen for all future comparisons. At
0.3 s, the melt-pool is more shallow in SPH, compared to
WM and COMSOL, with its melting contour having a very
similar shape to that shown in Fig. 9 for the same time. This
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Fig. 10 Evolution over time of the melt-pool dimensions depth and
width at 4.5 mm

suggests that the convective heat transfer has not yet started
in the SPH case, which could be due to insufficient amount
of particles to allow for any fluid movement. At 1.0 s, we can
see excellent agreement between the SPH, WM and COM-
SOL method, not just in terms of maximal width or depth,
but also in the general shape of the melt-pool. At 1.6 s, the
agreement between SPH and COMSOL can still be regarded
as very good, while WM deviates for these solutions in the
lower part of the melt-pool z ≤ 0.001 m, as full penetra-
tion of the work piece is already achieved for WM at this
time step, whereas both SPH and COMSOL are just about to
reach the bottom boundary. For the intermediate part 0.001m
≤ z ≤ 0.0045 m, the COMSOL solution is right in between
the WM and SPH solution. It should be mentioned that there
are slight deviations in the top part z > 0.0045 m for the
SPH solution, which occur due to missing particles.

To obtain a better understanding of the significant veloci-
ties, the velocity distributions at t = 1.0 s along the symmetry
axis (z) are shown in Fig. 12. The shape of the velocity
distribution is very similar for all three solutions, while the
difference between WM and COMSOL is quite comparable
to the difference between COMSOL and SPH. This is espe-
cially remarkable since both WM and COMSOL are FEM
solvers of the same problem. In the light of the observed dif-
ferences between both FEM approaches, the disagreement
of the SPH method with the FEM solvers appear to actually
be within the margin of error that can be expected from the
application of a FEM in general. On the contrary, the overall
level of agreement is especially remarkable when consider-
ing that in the SPHmethod an entirely different discretization
is used and that a whole three dimensional domain is simu-
lated. The agreement in the radial direction is very good for
all three methods. For SPH, the velocities fluctuate around
0m s−1, due to the three dimensional nature of the simulation.

Fig. 11 Melting temperature (1773K) iso-contours at different times
for SPH and WM, including conductive heat transfer driven by the
Lorentz force

Fig. 12 Velocity by component along the symmetry axis at t = 1.0 s

The fluctuations of the velocity for SPH may also be partly
attributed to the fact that only a slice of full 3D data is exam-
ined, where no constraints explicitly enforce strict movement
within the radial plane. As such, it is only to be expected for
a certain amount of statistical noise to be present in the SPH
velocity components, compared to the FEM methods where
the considered axis was realized as a rotational symmetry
boundary, and as such does not permit movement in radial
direction.

Lastly, the temperature for the chosen characteristic time
steps along the symmetry axis (z) is shown in Fig. 13. Again
similar observations regarding agreement as before can be
made. We see excellent agreement in the temperature distri-
bution for t = 1.0 s between all three methods, while some
deviation can be observed for times close to the beginning
t = 0.3 s and for times close to full penetration t = 1.6 s.
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Fig. 13 Temperature along symmetry axis at different times. The dotted
black line marks the melting temperature (1773K)

At time t = 0.3 s, it should be pointed out that SPH reaches
a higher maximal temperature at z = 0.005 m and does not
share the characteristic shape we observe for the other dis-
tributions, but exhibits a more uniform temperature decay as
one would expect from a purely conductive heat transfer. As
mentioned earlier in the description of Fig. 11, this is most
likely due to inhibited fluid movement at early times, as can
also be observed later in Fig. 14b for t = 0.3 s. Again, for
this time step t = 0.3 s, the COMSOL aligns more closely
with the WM method, although not reaching perfect agree-
ment. The shape of the COMSOL solution at this time seems
to indicate weaker conductive heat transfer than WM, there-
fore most likely representing an intermediate state between
the SPH and WM solution, which is an observation already
made for some of the previous data, e.g., Fig. 12.

For t = 1.0 s, we see excellent agreement between all
three solutions for the lower half of the temperature distribu-
tions (z > 0.0025 m); however, in the upper half, we observe
slightly higher temperatures in SPH compared to WM and
COMSOL.

At t = 1.6 s, the largest discrepancy between the three
solutions can be found at the bottom of the melt-pool. While
the SPH and COMSOL solution show very good agreement
at the lower part of the axis (z ≤ 0.001 m), the WM solu-
tion differs strongly from both. This could be, as previously
mentioned, due to the effect of the lower boundary, as WM
has already achieved full penetration at this time step, while
the SPH and COMSOL solution have not yet achieved it.
However, for the upper part of the axis (z > 0.001 m), the
agreement between COMSOL and WM is very good, while
the temperatures calculated by SPH is slightly higher, with
the deviation further increasing slightly with increasing z.
All distributions have the previously mentioned characteris-

tic shape, however the WM solution consistently predicts a
deeper weld pool, indicating a stronger convective heat trans-
fer in the entire melt-pool, consistent with the observations
on the velocities in Fig. 12. Regarding the temperature profile
along the height axis, it can also be said that our SPHmethod
lies well within the margin of error that can be expected
between two different FEM solvers.

Qualitative comparison
Following the quantitative analysis, we will now show a

qualitative comparison of the SPH and COMSOL solutions
for the half of the cross section at times t = 0.3 s, t = 1.0 s
and t = 1.6 s. These times were selected, as both t = 0.3 s
as well as t = 1.6 s showed the greatest difference between
the methods with regard to the melt-pool dimensions shown
in Fig. 10. While the deviations were strongest for the com-
parison with the WM solution, the qualitative comparison
will compare the SPH and the COMSOL solution where the
agreement with of the melt-pool dimensions was best.

Over the whole duration, the time t = 0.3 s showed the
larges disagreement between both methods, as can be seen
also from the study of Figs. 10 and 11. While the disagree-
ment is within the expected margin of error given by the
comparison of the two FEMmethods, looking in more detail
at Fig. 14a, b, one can see that the melt-pool (as indicated by
the melting temperature iso-countour as a black line) in the
COMSOL simulation is slightly deeper than the melt-pool of
the SPH simulation, while the melt-pool radius appears com-
parable. It is also possible to observe the distinct deviation
in the velocity field between the two simulations, which is
in line with the observation of the velocity in Fig. 12. A sta-
ble vortex seems to have already developed in the COMSOL
simulation, while the SPH particles are barely in motion. We
explain this by the very restrictive boundary condition in the
SPH simulation. Until there is enough space for particles to
overwhelm, or circumvent, the pressure forces keeping the
fluid incompressible, the fluid will remain motionless. Since
we are using an implicit pressure solver, the pressure forces
will be quite large until a suitable large region of the fluid has
melted, allowing for more movement while still maintaining
incompressiblity. The difference in velocity also explains the
deviation in melt-pool shape, since at t = 0.3 s the SPH sim-
ulation is still only transferring heat by conduction, while the
melt-pool of the FEM simulation is increasing in depth due
to an increase in convection.

Next, in Fig. 14c, d, we show the temperature and veloc-
ity distributions at t = 1.0 s for both SPH and COMSOL.
Overall these results show excellent agreement, both in terms
of the melt-pool dimensions (width and height) as well as
the actual temperature and velocity field. The temperature
fields appear almost identical, however, the melt-pool con-
tour exhibits small deviations, especially close to the top
boundary. In addition, the velocity magnitude of the SPH
simulation at the symmetry axis is slightly lower than that
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Fig. 14 Side-by-by comparison
of SPH and FEM results of
temperature (left column) and
velocity (right column). The
SPH solution is always shown
on the left within each figure,
while the WM solution is shown
on the right
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of the COMSOL simulation. We are unsure about this devia-
tion and can only speculate that due to the increased pressure
forces (slight over-pressure) as mentioned above, the veloc-
ity slightly decelerated. Otherwise, there are no movement
inhibiting forces acting on the fluid which are not shared
across both simulations, i.e., viscosity and momentum-sink.
Regardless of the difference in velocity magnitude, the flow
pattern is, similar to the temperature field, almost identical.

Finally, considering the simulations at t = 1.6 s in Fig. 14e,
f, we show the instance where full penetration is reached for
both solvers, almost simultaneously, see also Fig. 10. One
can see that the comparison of the temperature fields show
very good agreement as well, where the general shape of
the melting temperature iso-countour is captured accurately
almost in the entire region, except for a small area close to
the top surface. The velocity field also exhibits the same flow
pattern as at t = 1 s, where the velocity magnitude is again
slightly lower in the SPH simulation than in the COMSOL
simulation.

Overall, we can observe very good agreement between the
flow patterns and temperature distributions of both simula-
tion methods. We speculate that the observed differences at
t = 0.3 s results from restricted motion in SPH due to high
pressure forces, which would also explain the diminished
velocity magnitude and subsequent time steps, but could not
confirm nor deny this speculation in a brief investigation.
While this discrepancywarrants further study,wehave shown
successfully that the observed flow pattern and temperature
field agree very well over a long duration and retain distinct
similarities when the melt-pool depth differs.

4 Discussion

The comparison of the results from the SPH,WM and COM-
SOL solvers yields intriguing results. The simplifications
strongly favor the application of an Eulerian method, and
one of the main goals of this comparison was to investigate
whether the SPH method is able to achieve good results in
such a setting. Under consideration of the previous evalu-
ation, we believe this to absolutely be the case, as we were
able to observe very goodquantitative agreement between the
SPH and Comsol methods, while observing the same overall
trends with the WM method.

Firstly, the conductive heat transferwas confirmed towork
as expected, up to differences which can be accounted for by
differences in spatial and temporal discretization. Secondly,
the convective heat transfer seems to be in good agreement
between SPH and COMSOL as could be seen for exam-
ple by the melting temperature iso-contours of Fig. 9. The
convective heat transfer in WM seemed to occur slightly
faster. This is in line with the observations on the veloc-
ities, see Fig. 12, that seem to exhibit some deviation for

all three methods of ≈ ±20%. In the light of these devia-
tions, the excellent agreement for the melt pool depth at 0.6 s
< t < 1.3 s seems somewhat surprising. Figure 13 seems to
confirm that the convective heat transfer in downward direc-
tion is slightly slower at all times of the SPH simulations
as the temperature at the top, close to the heat source, is
slightly higher. Nevertheless, the temperature profiles align
almost perfectly for SPH andCOMSOL toward the bottomof
the melt pool, where the WM solution deviates significantly
from both. The movement of the melt pool depth in SPH and
COMSOL between 0.2 s < t < 0.5 s, as shown in Fig. 10
seems especially intriguing, as both methods agree, while
the WM solution shows a deviation. We can only assume
that this deviation between the two FEM solvers is due to
implementation-specific details.

Another observation relates to the fact that the SPH solu-
tion deviates from the other two mostly for earlier times, i.e.,
t < 0.3 s, where the number of particles in the melt pool
seems to be insufficient to allow for a development of a flow
pattern, while at the same time, the implementation of a fixed
boundary wall is not native to SPH, as SPH has its strength
especially in the treatment of unbounded domains, and to
a certain degree free fluid surfaces. The pressure forces in
SPH might actually block the flow, while for WM the con-
sideration of fixed wall boundary conditions is natural to the
method, and no such restrictions exist when a free-slip con-
dition is used.

It should be kept in mind however that for a real process,
the free surface is not actually confined in such a way. Of
course, for a comparison of melt pool development with the
real process, also the nonlinearity of the material parameters
must be considered. Here, the inclusion of the latent heat
in terms of the Stefan Problem is known to present a signifi-
cant challenge, among others. Nevertheless, even established
Eulerian approaches have difficulty reaching satisfactory
agreement without the use of strong compensation mod-
els and all the peculiarities that derive from the challenges
related to the free surface deformation, discontinuities and
strong topological changes that are typical for arc welding
processes. As such, while the inclusion of latent heat in terms
of the Stefan Problem is also nontrivial task for SPH meth-
ods, we consider our SPH model to be a suitable candidate
for performing simulations of the more complex interactions
and physics of the real process, due to the improved ability
to model surface deformation, discontinuities and significant
topological changes.

5 Conclusion

In this work, a full 3D SPH model for the simulation of
a TIG spot-welding process was proposed and compared
quantitatively with a 2 + 1D FEM simulation implemented
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in Wolfram Mathematica and COMSOL. We were able to
show a remarkable agreement of our SPH method and the
WMandCOMSOLmethods, especially given the differences
that we were able to observe between the WM-FEM and the
COMSOL-FEM solving entirely identical problems.

Overall, our work confirms the expectation that the SPH
method represents an at least equivalent capability of quanti-
tatively modeling welding processes. This holds even under
conditions that are simplified in such away to compensate for
the limitations of the Eulerian methods (free-surface), while
at the same time strongly favoring the application of a Eule-
rianmethod (bounded domain). Therefore, we expect that the
SPHmethod can outperform the approach posed by Eulerian
methods under more realistic conditions, i.e., allowing for
a free surface, and requiring full 3D also for the Eulerian
Method, especially once the numerical treatment of the non-
linear material parameters has been realized.
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