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Figure 1: Two example applications of micropolar materials in computer graphics. Left: A thin clamped sheet collides with a
sphere and bends. With classic isotropic elasticity (top row) the sheet can either be stiff, and therefore nearly inextensible
(𝐸 = 1 · 107 Pa), or soft and stretchy (𝐸 = 2 · 104 Pa). However, micropolar materials can simultaneously be extensible (𝐸 = 2 · 104 Pa)
and stiff to bending (𝜇𝑐 = 𝜇, 𝐿𝑐 = 1). Further, bending stiffness can be isotropic (bottom left, 𝛼 = 𝛽 = 𝛾 = 20) or anisotropic
(bottom right, C𝑥𝑦 = 20). Right: The rest pose curvature of three thin sheets, starting from a flat initial pose, is modified to
induce internal stresses that result in large deformations and end up forming a lotus-like shape.

ABSTRACT
We explore micropolar materials for the simulation of volumetric
deformable solids. In graphics, micropolar models have only been
used in the form of one-dimensional Cosserat rods, where a rotating
frame is attached to each material point on the one-dimensional
centerline. By carrying this idea over to volumetric solids, every
material point is associated with a microrotation, an independent
degree of freedom that can be coupled to the displacement through a
material’s strain energy density. The additional degrees of freedom
give us more control over bending and torsion modes of a material.
We propose a new orthotropic micropolar curvature energy that
allows us to make materials stiff to bending in specific directions.

For the simulation of dynamic micropolar deformables we pro-
pose a novel incremental potential formulation with a consistent
FEM discretization that is well suited for the use in physically-based
animation. This allows us to easily couple micropolar deformables
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with dynamic collisions through a contact model inspired from
the Incremental Potential Contact (IPC) approach. For the spatial
discretization with FEM we discuss the challenges related to the
rotational degrees of freedom and propose a scheme based on the
interpolation of angular velocities followed by quaternion time
integration at the quadrature points.

In our evaluation we validate the consistency and accuracy of our
discretization approach and demonstrate several compelling use
cases for micropolar materials. This includes explicit control over
bending and torsion stiffness, deformation through prescription of
a volumetric curvature field and robust interaction of micropolar
deformables with dynamic collisions.
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1 INTRODUCTION
Classical hyperelastic displacement-based constitutive laws, such
as the St. Venant-Kirchhoff and Neo-Hookean models, define strain
energy densitiesΨ(F) that depend only on the deformation gradient
F at each material point. This is sufficient for modeling a wide range
of natural and interesting deformation, including realistic response
to twisting and bending. Fundamentally, however, resistance to
bending and torsion only happens in the aggregate; individual
material points have no concept of torsion or bending. Therefore,
an object’s ability to resist bending and torsion is a consequence of
the elastic stiffness and geometry of the object.

A lesser known class of materials are micropolar materials. In
contrast to classical models, micropolar materials have additional
microstructure in the form of a rotating frame attached to every
material point. This rotating frame can be represented by a micro-
rotation R relative to the reference frame, and is typically coupled
with displacements through the strain energy density Ψ(F,R). The
added microrotation gives each material point a measure of "volu-
metric curvature", which makes it possible to define strain energies
that resist bending and torsion at each material point of the volume.

Inspired by these intriguing properties of micropolar materials,
we present an exploratory study of micropolar models for use in
graphics. We go beyond the physics and study artificial materials
with rotational microstructure, which we show can produce a num-
ber of interesting effects when employed in dynamical simulation
of deformables.

For example, whereas classical displacement-based materials
must fundamentally choose between stiffness and softness, we
show in Section 5.2 that micropolar materials can take on soft
characteristics while simultaneously being resistant to bending. In
Figure 4 and the supplemental video, we demonstrate how a volu-
metric hollow bunny remains soft to stretching, yet it is resistant to
bending, and therefore does not collapse under its own weight like
the classical Neo-Hookean material. We also demonstrate how the
microstructure can be used to gradually induce curvature in the
material, like the helices in Figure 6 and the lotus flower in Figure 1.

In order to study micropolar materials for dynamic deformables,
we develop a novel finite element discretization in which we spa-
tially interpolate angular velocities on the nodes to circumvent
difficulties of directly interpolating rotations (Section 4.2). We in-
tegrate the discretization in an Incremental Potential formulation
of Backward Euler (Section 4.1), which enables us to model dy-
namic collisions of micropolar solids with an IPC-inspired contact
model [Li et al. 2020]. We also develop a novel intuitive orthotropic
curvature energy that can be used as an alternative to the isotropic
micropolar curvature energy commonly found in the mechanics
literature (Section 3.3.2). The orthotropic curvature energy allows
us to make deformables stiffer to bending in specific directions,
which can be used to phenomenologically model more complex
materials, for example with directional fibers or hole patterns. In

Section 5, we demonstrate experimentally the consistency of our
discretization, and contrast the behavior of our micropolar material
models to classical models in a number of experiments.

2 RELATEDWORK
Dynamic deformables in graphics. In physically-based animation,

several approaches for the simulation of elastic deformables in
multi-physics systems are established today. This includes Position-
based dynamics [Bender et al. 2014; Müller et al. 2006], XPBD [Mack-
lin and Müller 2021; Macklin et al. 2016] and Projective Dynam-
ics [Bouaziz et al. 2014; Narain et al. 2016; Overby et al. 2017]. In
recent years, incremental potential formulations (also known as
optimization time integration [Gast et al. 2015; Kane et al. 2000;
Kharevych et al. 2006]) combined with the Finite Element Method
(FEM) for the spatial discretization of elastic bodies [Kim and Eberle
2022; Sifakis and Barbic 2012] gained popularity. Especially for chal-
lenging contact problems, the Incremental Potential Contact (IPC)
approach [Li et al. 2020] built on these concepts proved to be very
successful. Subsequently IPC was extended, e.g, to support coupling
with co-dimensional deformables, rigid bodies and joints [Chen
et al. 2022; Ferguson et al. 2021; Li et al. 2021]. In this work we will
present an incremental potential formulation of micropolar elastic-
ity with a consistent FEM discretization. This allows us to solve the
dynamic problem using robust optimization methods and to couple
our micropolar model with an IPC-inspired contact model.

Rotation DOFs in graphics. A core component of micropolar elas-
ticity is the introduction of explicit rotational degrees of freedom
in addition to the displacements known from classic elasticity. In
the graphics community, the explicit use of rotational degrees of
freedom was proposed by Müller and Chentanez [2011] to make
shape matching more robust for the simulation of rigid, soft and
plastic bodies in the context of PBD. However, this approach is
quite specific for PBD and the rotations are not used for material
modeling purposes. Recently, Brown and Narain [2021] proposed an
ADMM solver and Trusty et al. [2022] a mixed FEM formulation for
nonlinear elastic deformables which are explicitly rotation aware to
improve robustness and convergence for large deformations under
wide ranges of material and simulation parameters. Again, the ro-
tation information does not introduce any new material modelling
capabilities and the methods are therefore orthogonal to our work
on micropolar material models.

Bending in deformable solids. Explicitly considering bending or
curvature to model the behavior of deformables is mostly limited to
shells and rods in physically-based animation (see e.g. [Bergou et al.
2006; Grinspun et al. 2003]). A notable special case is the concept
of “elastons” proposed by Martin et al. [2010] which acts as a sort
of integration rule with a single strain energy density for a unified
formulation of rods, shells and volumetric deformables. However,
while the elaston approach generally incorporates bending terms
they are explicitly designed to vanish in the limit of refinement for
volumetric solids. Micropolar materials instead introduce a notion
of bending also for volumetric bodies in the continuum setting using
explicit rotational degrees of freedom that are not present in the
elaston model. In this sense, the concept of elastons is orthogonal
to micropolar material models and one could potentially extend
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elastons to unify the implementation for micropolar solids, shells
and rods as well.

Micropolar theory in graphics. In computer graphics, the theory
of micropolar materials is nearly exclusively established in the form
of Cosserat rods. These were initially introduced to the graphics
community by Pai [2002] and inspired many works in subsequent
years such as improvements for the robust dynamic simulation with
self-contact [Spillmann and Teschner 2007], nets of rods linked with
elastic joints [Spillmann and Teschner 2009], efficient simulation
using PBD [Kugelstadt and Schömer 2016; Umetani et al. 2014], stiff
and inextensible rods in XPBD [Deul et al. 2018] as well as volume
invariant generalized rods, e.g., for the simulation of muscles and
muscle groups [Angles et al. 2019]. To our knowledge the only work
inspired by micropolar theory in a different domain of physically-
based animation is the micropolar turbulence model for SPH fluids
proposed by Bender et al. [2017] which uses extra rotational degrees
of freedom in a fluid to dynamically introduce more turbulent
details.

Foundations of micropolar media. In mechanics, the foundations
for micropolar materials were originally introduced by the Cosserat
brothers [Cosserat and Cosserat 1909] who explored the kinematic
relations of rods, shells and three-dimensional bodies involving
additional rotational degrees of freedom. The classic models of
Reissner-Mindlin plates [Neff et al. 2010], Timoshenko beams and
Kirchhoff rods [O’Reilly 2017] can all be derived from this theory.
Constitutive relations for such materials were introduced much
later and an overview is provided, e.g., by Eringen [1999] and Ere-
meyev et al. [2012]. The properties of the variational problems
associated with micropolar elasticity are not as well-studied as for
classic elasticity but existence proofs of solutions can be found in
the literature [Neff et al. 2015; Tambača and Velčić 2010]. In practice,
micropolar material models are used to simulate deformable mate-
rials under the influence of external magnetic fields [Dadgar-Rad
and Hossain 2023; Münch et al. 2011], granular materials [Walsh
and Tordesillas 2006], porous media [Diebels 1999], phenomena
from geomechanics [Abreu and Durand 2021; Manzari 2004], crys-
tals [Abreu et al. 2018; Neff 2006], blood flow [Mekheimer and Kot
2008] and more.

Micropolar FEM. While fully nonlinear micropolar models were
introduced in the past [Bauer et al. 2012; Ramezani et al. 2009], the
use of so-called “physically linear” micropolar models is much more
widespread. The forces of the latter models are linear in the defor-
mation gradient but the overall problem is still nonlinear due to the
coupling with rotations [Neff 2006]. In contrast to classic linear elas-
ticity, the physically linear micropolar models can still be applied
for large deformations. In mechanics the spatial discretization is
commonly performed using FEM. The displacement field is usually
discretized the same way as for classic elasticity, however it was
suggested to enhance linear elements with “incompatible modes”
(e.g. quadratic contributions) for the deformation field to improve
convergence in scenarios dominated by strong bending [Grbčić
et al. 2018]. The nodal microrotations are commonly interpolated
using direct linear interpolation of rotation vectors [Bauer et al.
2010; Münch 2007]. As this often requires the conversion between
rotation representations, Ghiba et al. [2022] recently proposed a

formulation entirely in terms of skew-symmetric matrices related
to rotation vectors which does not require explicit conversions.
While the continuous micropolar model supports arbitrary rota-
tions, the linear interpolation of rotation vectors introduces errors
due to the nonlinear structure of the group of rotations 𝑆𝑂 (3). An
alternative approach is Geodesic FEM [Sander 2012, 2015] which
is a general purpose discretization approach that accurately inter-
polates degrees of freedoms with manifold structure. The overall
numerical framework required to apply Geodesic FEM, however, is
very involved and computationally expensive. In computer anima-
tion, especially for skinning, Quaternion Linear Blending (QLB or
QLERP) [Kavan and Žára 2005] is an established method to blend
between multiple rotations. Due to drawbacks discussed in more
detail in Section 4.2.1, we instead propose a discretization based
on incremental rotations, or more specifically the interpolation of
angular velocities which fits well into our incremental potential
formulation.

Anisotropic and example-based materials. In this work we demon-
strate properties of micropolar materials that enable more (artis-
tic) control over elastic bodies than traditional isotropic materials.
Therefore, we briefly discuss approaches in classic elasticity with
similar goals. For example, Li and Barbic [2014] introduced stability
criteria to select parameters for orthotropic materials with different
stiffness parameters in three orthogonal directions. Xu et al. [2015]
introduced a method to design nonlinear orthotropic materials by
editing stress-strain curves. More recently, Kim et al. [2019] pro-
posed an inversion-safe transverse isotropic material which can be
used to strengthen or soften isotropic materials in a specific fiber
direction. Nevertheless, these approaches only give explicit control
over shear and stretch stiffness of a material.

A different category of established methods that give users more
control over physically plausible deformations is given by example-
based materials [Fröhlich and Botsch 2011; Schumacher et al. 2012].
These methods require a set of example poses of a mesh and then
perform a physically-based inter- or extrapolation to new config-
urations. However current example-based methods are based on
classic elasticity and the concept is in general orthogonal to using
a micropolar material model for the physical simulation.

3 A MICROPOLAR MATERIAL MODEL
Our goal is to formulate a strain energy density function which we
can later minimize in an incremental potential context. To this end,
we briefly review the concept of micropolar materials in Section 3.1,
then define the corresponding kinematic relations and strain mea-
sures in Section 3.2. Using these strain measures, we introduce
a micropolar strain energy density in Section 3.3 and discuss its
properties.

Definitions and notation. Let 𝒆𝑖 be the orthogonal unit vectors
in the three coordinate directions 𝑖 = 1, 2, 3, and we employ the
Einstein summation conventions. As a shorthand for differentiation,
we define

𝑓,𝑖 :=
𝜕𝑓

𝜕𝑿𝑖
, (1)

which has the same dimensions as 𝑓 . We will use superscript indices
to denote running indices (e.g., nodal indices) in expressions where
it helps to avoid confusion with spatial indices.
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For every vector 𝒘 ∈ R3 there exists a cross product matrix
cross(𝒘) ∈ R3×3 such that cross(𝒘)𝒗 = 𝒘 ×𝒗 for any 𝒗 ∈ R3. Given
a skew-symmetric matrix W, we denote the unique vector𝒘 ∈ R3
such that W = cross(𝒘) by axl(W). We will denote the symmetric
part of a matrix by sym(A) and the skew-symmetric part skew(A).

We assume the reader is familiar with the basics of classic elastic-
ity and refer to the course notes of Kim and Eberle [2022] and Sifakis
and Barbic [2012] for an introduction to this field. In the following
we will present a total Lagrangian formulation, i.e. a material model
with respect to a fixed reference (material) configuration Ω ⊂ R3
where uppercase 𝑿 ∈ Ω denotes material points in the reference
configuration and lowercase 𝑥 (𝑿 ) are the corresponding positions
in the deformed configuration.

3.1 Micropolar continua
Micropolar materials are a special case of more general micromor-
phic materials [Eringen 1999]. In addition to the displacement, mi-
cromorphicmaterials exhibit a “microstructure” that can, depending
on the specific class of material rotate, stretch and possibly shear
independently from its macroscopic (classic) deformation. In three-
dimensional space the microstructure can be described by a set
of three “directors” {𝒅1, 𝒅2, 𝒅3} ∈ R3 in each material point. The
directors are essentially basis vectors that usually coincide with
the unit vectors 𝒆𝑖 in the rest configuration but can change their
orientation and length under internal and external forces. For mi-
cropolar materials, the directors form a rigid coordinate system
attached to each material point, and the directors can be interpreted
as columns of a rotation matrix R = 𝒅𝑖 ⊗ 𝒆𝑖 . See Figure 2 for a vi-
sualization. The notation of directors and rotation matrices can be
used interchangeably and we introduce it here for easier reference
with related work. To summarize, in classic elasticity every mate-
rial point has 3 degrees of freedom that describe its displacement
from its rest position 𝒖 (𝑿 ) : Ω → R3. Micropolar materials feature
additional degrees of freedom to represent the rotation of their
microstructure, the microrotation field R(𝑿 ) : Ω → 𝑆𝑂 (3), where
𝑆𝑂 (3) is the group of rotations in three-dimensional space.

In general, the microrotation R does not coincide with the macro-
scopic or geometric rotation of the material R, where the latter can
be determined uniquely from the polar decomposition of the defor-
mation gradient F = RU. Instead, the microrotation R is an indepen-
dent set of degrees of freedom that can be coupled to the material
displacement depending on the specific choice of material model.
Requiring that the microrotationmatches the macrorotation exactly,
i.e. R = R leads to “couple-stress” theory or higher-order gradient
continuum theory which involve second and possibly higher-order
derivatives of the displacement field [Grbčić et al. 2018; Sansour
and Wagner 2003]. For a general discussion on the relation of these
theories we refer to Steinmann and Stein [1997]. In the context of
our simulations, we will discuss the coupling of the rotations in the
following sections and revisit it in the evaluation in Section 5.1.

3.2 Kinematic relations
While strain measures such as the small strain tensor 𝜺 or the Green
strain tensor E are well-known in physically-based animation, these

are not sufficient for micropolar materials. We follow the formula-
tions employed by Eremeyev et al. [2012, Chapter 4.2.1]1, which we
summarize in the following. We will initially represent the micro-
rotations R as rotation matrices, but will later revisit the topic of
rotational representation . We start with the deformation gradient

F =
𝜕𝒙

𝜕𝑿
= 𝒙,𝑖 ⊗ 𝒆𝑖 . (2)

In analogy to the stretch tensor U from the polar decomposition
of the deformation gradient F = RU, we define the (generally)
non-symmetric stretch tensor

U = R
𝑇

F . (3)
While the polar factor U is unique for a given F and always sym-
metric positive semi-definite, this does not hold for U in general
as it depends on the independent variable R. Based on this stretch
tensor we define the strain measure for stretch

E = U − I , (4)
which vanishes in the rest configuration and is our counterpart of
the small strain tensor 𝜺 or the corotational strain tensor U − I.

While the stretch tensor E measures the strain in the material
due to spatially varying displacements, we need a separate strain
measure for spatially varying microrotations R or the microstruc-
ture curvature. Many alternative formulations of these curvature
measures can be found in the literature, but they are usually derived
from the third-order Lagrangian curvature tensor

K = R
𝑇∇R = (R𝑇 R,𝑘 ) ⊗ 𝒆𝑘 or K𝑖 𝑗𝑘 = R𝑙𝑖R𝑙 𝑗,𝑘 . (5)

It can be shown that each individual term R
𝑇

R,𝑘 is skew-symmetric
which implies that K has only 9 independent components and
can therefore be represented by a single 3 × 3 matrix instead. This
enables us to define a matrix-valued curvature measure which is
more intuitive to handle. One such option is the wryness tensor

Γ = axl(R𝑇 R,𝑘 ) ⊗ 𝒆𝑘 , (6)
which will be our strain measure for curvature in the following.

Connection to Cosserat rods and the Darboux vector. To set the
wryness tensor Γ in context with established formulations of one-
dimensional rods, it can also be expressed in terms of the previously
introduced directors 𝒅𝑖 (i.e. the columns of R) as

Γ =
1
2R

𝑇 (𝒅 𝑗 × 𝒅 𝑗,𝑖 )︸      ︷︷      ︸
C2𝒘𝑖

⊗ 𝒆𝑖 = R
𝑇
𝒘𝑖 ⊗ 𝒆𝑖 (7)

which corresponds to the formulation used by Tambača and Velčić
[2010]. Comparing this with the bending and twisting measure used
by Kugelstadt and Schömer [2016] for the simulation of Cosserat
rods, we can see that for 𝑖 = 1 the term

𝒘1 =
1
2𝒅 𝑗 ×

𝜕𝒅 𝑗
𝜕𝑿1

(8)

corresponds to the Darboux vector that describes the spatial rate
of change in material orientation along a rod’s centerline. Thus
1We refer to Neff et al. [2015] for a more straightforward introduction of the formula-
tions introduced by Eremeyev et al. [2012] without detailed derivations. Also, several
alternative definitions of strain measures can be found in the mechanics literature and
we refer to Pietraszkiewicz and Eremeyev [2009] for reference.
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the wryness tensor Γ is a direct generalization of this concept to
volumetric bodies, which allows us to interpret the entries of Γ.
An entry Γ𝑖 𝑗 describes how the rotation around the material’s 𝑖-th
axis changes along its 𝑗-th axis. Therefore, the diagonal entries
represent the amount of torsion around the corresponding axis
while off-diagonal entries describe the amount of bending of the
microstructure.

Rest curvature. While prescribing an absolute orientation as “rest
rotation” is possible by considering the relative rotation R

𝑇
0 R in-

stead of R everywhere, this basically changes only the directions
used to measure curvature such as torsion or bending. Much more
interesting for the application in physically-based animation is the
possibility to prescribe a rest curvature of the material. This can be
incorporated by setting

Γ = Γ − Γ0 , (9)

where Γ0 is the rest curvature in the material frame. Minimizing a
strain energy based on this modified curvature measure can then
lead to internal stresses and cause deformation originating from the
interior of the material depending on the choice of stiffness param-
eters. We will explore useful applications of the rest curvature term
in the context of physically-based animation in our experiments
presented in Section 5.3.

3.3 Constitutive laws
The previously introduced strain measure for stretch E(R, F) and
the wryness tensor Γ(R,R,𝑘 ) as strain measure for curvature can be
used to define a material model in terms of a strain energy density
function Ψ which we will assume to be the sum of two separable
terms

Ψ(E, Γ) = Ψmp (E) + Ψcurv (Γ) . (10)
Note that Ψmp and Ψcurv are still coupled through the dependence
on the microrotation R. We will refer to Ψmp as the micropolar
strain energy density and to Ψcurv as the micropolar curvature
energy density.

3.3.1 A “physically linear” micropolar material. In computer graph-
ics, nonlinear material models are quite common as they are usually
trivially invariant to rigid rotations and are able to model (near)
incompressibility better. While fully nonlinear micropolar models
exist, their use is not widespread. We will briefly discuss some non-
linear variants in Section 3.3.3. With this work, instead, we want to
focus on the so-called physically linear micropolar materials which
have in common that the corresponding stress tensor is linear in
the stretch tensor U. However, the overall elastic problem will re-
main nonlinear (referred to as “geometrically nonlinear”) due to
the multiplicative coupling with the microrotations R as well as
the nonlinear structure of 𝑆𝑂 (3) itself. This makes these micropo-
lar materials suitable for large deformations in contrast to classic
linear elasticity. Here, we follow the definitions of Neff [2006] by
introducing the isotropic energy densities

Ψmp,lin (E) = 𝜇∥symE∥2𝐹 + 𝜇𝑐 ∥skewE∥2𝐹 +
𝜆

2 tr(E)2 , (11)

Ψcurv,iso (Γ) = 𝜇
𝐿2𝑐
2 (𝛼 ∥sym Γ∥2𝐹 + 𝛽 ∥skew Γ∥2𝐹 + 𝛾 tr(Γ)

2) , (12)

where 𝜆 and 𝜇 are the standard Lamé parameters, 𝜇𝑐 is the Cosserat
couple modulus, 𝐿𝑐 is a characteristic length scale of the microstruc-
ture and 𝛼 , 𝛽 and 𝛾 are additional micropolar curvature stiffness
parameters2. The parameters 𝛼 and 𝛽 are intended to control bend-
ing while 𝛾 controls stiffness to torsion. By multiplying the degrees
of freedom by an arbitrary rotation matrix, it can be shown that
these energies are still invariant under external rigid rotations. We
will now provide some intuition for this material model.

In relation to classic hyperelasticity. First of all we want to high-
light the superficial similarity of the linear micropolar strain en-
ergy Ψmp,lin to common classic hyperelastic materials. The strain
in classic elasticity is assumed to be symmetric and therefore the
skew-symmetric part of a classic strain measure will be zero (i.e. the
second term in Eq. (11) vanishes). So, if we evaluate Ψmp,lin instead
of E with the classic small strain tensor 𝝐 , the corotational strain
R𝑇 F − I or the Green strain tensor E, we actually obtain the strain
energy density for linear elasticity, corotated linear elasticity and
the St. Venant Kirchhoff model, respectively.

Formicropolarmaterials, the strainmeasure E can be asymmetric
and in consequence the stress tensors resulting from the internal
energy densities are generally asymmetric as well. This can be
used to model internal torques or “couple-stresses” as well as the
application of torsional loads directly in the interior (or on the
surface) of the material [Dadgar-Rad and Hossain 2023].

The couple modulus 𝜇𝑐 . Introduced as a new material parameter,
the Cosserat couple modulus 𝜇𝑐 can be roughly interpreted as the
stiffness of a constraint coupling the microrotation field R to the
geometric or macrorotation R of the deformation gradient [Fischle
and Neff 2017b; Münch 2007]. In this context we can highlight a
few special cases.

Setting 𝜇𝑐 = 0 the coupling to the macrorotations vanishes
completely. Themicrorotation field will only be determined through
boundary conditions and the formulation of the curvature energy
density Ψcurv. However, the resulting microrotation field will still
have an influence on the stresses in the material through the strain
measure E. In combination with the fully physically linear strain
energy density Ψmp,lin, this can lead to similar effects as classic
linear elasticity under large rotations.

For values 𝜇𝑐 ≥ 𝜇 the microrotations become more strongly
coupled to the macrorotations. Ignoring external loads (body forces
and boundary conditions) and considering amicropolar length scale
of 𝐿𝑐 = 0 (i.e. zero curvature energy), Fischle and Neff [2017a] have
shown that the polar factor R is actually the unique minimizer of
the Cosserat shear-stretch energy terms from Eq. (11)

𝜇∥sym(R𝑇 F − I)∥2𝐹 + 𝜇𝑐 ∥skew(R
𝑇

F − I)∥2𝐹 (13)
for a given F. Moving towards 𝜇𝑐 → ∞ increases the strength of
the coupling and ultimately leads to the aforementioned limit case
of “couple-stress theory” where the rotation degrees of freedom
2For the strain energy Ψmp,lin different expressions can be found in the literature.
The representation introduced by Eringen [1999] which is also commonly used (see
e.g. [Eremeyev et al. 2012, Chapter 4.6],[Ramezani et al. 2009]) can be shown to be
equivalent by appropriate conversion of the material parameters (see [Münch 2007,
Appendix A.6]).

For the curvature energyΨcurv,iso we set the parameter𝛼4 of the original expression
proposed by Neff [2006] to zero for simplicity as it did not have considerable influence
in our experiments.



SCA ’23, August 04–06, 2023, Los Angeles, CA Löschner, Fernández-Fernández, Jeske, Longva and Bender

are directly dependent on the displacement field which requires
specialized numerical treatment.

When applying the physically linear material model in the con-
text of physically-based animation, our goal is to indeed have some
degree of coupling between the micro- and macrorotations as this
allows us to influence the material deformation using the microp-
olar curvature energy in a controlled way. Therefore, we suggest
a choice of 𝜇𝑐 ≈ 𝜇 as we want to avoid artifacts from rotations
deviating too far from the macrorotations (𝜇𝑐 ≪ 𝜇) as well as pos-
sible locking due to the lack of higher-order deformation gradient
information when using linear discretizations (𝜇𝑐 ≫ 𝜇).

Inspired by corotated linear elasticity which is widely used
in physically-based animation (see e.g. [Kugelstadt et al. 2018;
McAdams et al. 2011; Stomakhin et al. 2012]) one can also imagine a
coupling term similiar to R

𝑇
R − I, where R(F) is given by the polar

decomposition. In the mechanics literature only few works follow
this approach (see e.g. [Böhmer et al. 2016]) and while it complicates
the formulations of first- and second-order derivatives, Neff et al.
[2015] also note that this would introduce a non-convex energy to
the system. We therefore continue to use the more established phys-
ically linear material and leave further investigation of different
coupling terms for future work.

3.3.2 Orthotropic curvature energy. The curvature energy intro-
duced in Eq. (12) is an isotropic model and therefore does not dis-
tinguish between bending or torsion along different axes. For ap-
plications in physically-based animation, however, we can think of
many scenarios where more control depending on the direction of
the bending would be preferable. Consider for examples materials
inspired by, e.g., cloth with directional fibers or materials that have
a microstructure with holes which are not resolved by the model
geometry. As part of our contribution we propose an orthotropic
curvature energy that can be used instead of the isotropic curvature
energy given by

Ψcurv,ortho (Γ) = 𝜇𝐿2𝑐C𝑖 𝑗Γ𝑖 𝑗
2
, (14)

where C ∈ R3×3+ is a matrix of bending and torsion stiffness param-
eters. The entries of C follow the same intuition as introduced for
the wryness tensor Γ, i.e. an entry C𝑖 𝑗 defines the stiffness against a
change in rotation around the 𝑖-th axis while moving in direction of
the 𝑗-th axis. For anisotropic behavior which is not aligned with the
unit vectors 𝒆𝑖 in material coordinates (e.g. fibers in cross direction),
it is possible to transform the curvature measure into a different
basis similar to orthotropic materials in classic elasticity (see e.g. [Li
and Barbic 2014]). We show application examples involving this
anisotropic curvature energy in Section 5.2.

3.3.3 Fully nonlinear material models. While our experiments con-
tinue to focus on the physically linearmicropolarmaterial presented
in Section 3.3.1, for completeness we will briefly discuss nonlinear
variants.

The volume term
𝜆

2 tr(E)2 = 𝜆

2 tr(U − I)2 , (15)

from the micropolar strain energy density in Eq. (11) is structurally
similar to the corotational volume term tr(U−I) which corresponds
to a linearization (see e.g. [Smith et al. 2018]) of the Neo-Hookean

volume term ln(det F). In addition to being a linearization, this
term actually couples rigid rotational and volumetric deformation
when R ≠ R. This coupling seems nonphysical and it was pro-
posed (e.g. see [Münch 2007, Chapter 4.6] or [Fischle and Neff
2017b; Münch et al. 2011]) to replace it with a nonlinear term based
on detU = det(R𝑇 F) = det F which measures the actual volume
change. However, we noticed that combining this term with the
physically linear micropolar energy can cause locking under ex-
treme deformations and large Poisson’s ratios.

Alternatively, one can consider fully nonlinear micropolar mod-
els. Ramezani et al. [2009] derived micropolar generalizations of
classic nonlinear materials and based on this Bauer et al. [2012]
suggested a micropolar Neo-Hookean strain energy which can be
rewritten3 as

Ψmp,NH =
𝜇

2 (tr(F
𝑇 F) − 3) + 𝜆

4 (𝐽
2 − 1) −

(
𝜆

2 + 𝜇
)
ln 𝐽

+ 𝜇𝑐 ∥skewU∥2 . (16)
This model is a variant of a classic Neohookean strain energy den-
sity augmented by the micropolar rotation coupling term that is
also present in the physically linear model (as skewU = skewE).
We performed experiments with this model in scenarios with strong
twisting over multiple revolutions. However, when reaching points
where linear materials would start to invert, the strong internal
stresses of the Neohookean material seem to overpower and “dis-
able” the rotation coupling termwhich leads to a decoupled solution
of the rotation field. In this sense its strong nonlinearity does not
appear to be a good fit for the micropolar coupling term and we do
not see a significant advantage of such a model for the application
in physically-based animation without further modifications to e.g.
the coupling term.

4 DISCRETIZATION
In the following, we present an incremental potential formulation
for time integration (Section 4.1) and a novel FEM spatial discretiza-
tion (Section 4.2). The rotational degrees of freedom pose challenges
for the application of typical methods and we discuss the necessary
considerations to obtain a consistent discretization. We will later
evaluate the accuracy of our discretization in Section 5.1.

Equations of motion for micropolar media. In contrast to a major-
ity of works in the mechanics literature on micropolar media, in
physically-based animation we are mainly interested in dynamic
problems.While we will subsequently follow a variational approach
that is not directly based on the equations of motion, let us first
introduce them for reference. Following Eremeyev et al. [2012,
Chapter 3.6], the momentum and angular momentum balances
governing the dynamics of a micropolar continuum are given by

𝜌0 ¤𝒗 = 𝒇int + 𝜌0𝒈 and 𝑗0 ¤𝝎 = 𝒕int + 𝜌0𝒎 , (17)
where 𝒗 and 𝝎 are the material’s linear and angular velocities, 𝒇int
and 𝒕int are the internal forces and torques, 𝒈 and 𝒎 are external
body linear and angular accelerations, 𝜌0 is the rest density and
𝑗0 is the scalar measure of “rotary inertia” of the microstructure
in the rest configuration. The case of 𝑗0 = 0 is a valid choice and
3Note that we set 𝜅 := 2𝜇𝑐 compared to the formulation used by Bauer et al. [2012] in
order to scale it consistently with our physically linear model.
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results in microrotations that instantaneously align according to
the balance of angular momentum.

4.1 Incremental potential formulation
Formulating implicit time integrators like Backward Euler as opti-
mization problems is an established solution strategy that enables
the use of robust optimizers and facilitates coupling of physical
systems.Therefore, we do not discretize the momentum balances
directly as is customary in the mechanics literature. Instead, we
propose a new incremental potential formulation for micropolar
elasticity. After performing a spatial and temporal discretization
that we will introduce in the next sections, we arrive at an incre-
mental potential posed in terms of velocity degrees of freedom
which can be written as

𝐸 (𝒗,𝝎) =12 (𝒗 − 𝒗0)
𝑇 M𝜌0 (𝒗 − 𝒗0)

+ 1
2 (𝝎 − 𝝎0)𝑇 M𝑗0 (𝝎 − 𝝎0)

+ 𝐸int + 𝐸ext ,

(18)

where 𝒗0 and 𝝎0 are the global velocity vectors of the previous
timestep, M𝜌0 and M𝑗0 are the global mass and rotary inertia matri-
ces (lumped or computed in standard FEM fashion), 𝐸int is the total
internal (strain) energy and 𝐸ext is the potential due to external
accelerations.

Contact energy. In this context, we can add robust contact han-
dling to the simulation by introducing a potential contact. We em-
ploy the formulation by Li et al. [Li et al. 2020] which imposes
a barrier potential energy 𝐸𝑐 based on the unsigned distances 𝑑
between triangle-point and edge-edge pairs in contact as

𝐸𝑐 (𝑑) =
{
−𝑘𝑐 (𝑑 − 𝑑)2ln(𝑑/𝑑) if 𝑑 < 𝑑

0 if 𝑑 ≥ 𝑑,
(19)

where 𝑘𝑐 is the barrier stiffness and 𝑑 the distance at which the
barrier is activated.

Energy minimization. Our overall problem for each timestep can
then be written simply as

min
𝒗,𝝎

𝐸 (𝒗,𝝎) , (20)

with 𝐸 given by Eq. (18), followed by updating the displacement field
𝒙 and microrotation field R. To solve the minimization problem we
use Newton’s method with fully updated Hessians at each iteration.
Due to the complexity of some of the involved expressions we
choose to implement the local gradients and Hessians with the
help of the symbolic differentiation framework SymX [Fernández-
Fernández et al. 2023]. The scalar potential function 𝐸 can be directly
used for a standard backtracking line search to ensure a sufficient
decrease in the objective leading to improved convergence.

4.2 FEM Discretization
For accurate results that are consistent under refinement we choose
to perform the spatial discretization of the energy minimization
problem using the Finite Element Method (FEM). Central to FEM
is the best-approximation of a solution in the continuous domain
(e.g. the displacement field 𝒖 (𝑿 ) in classic elasticity) in a discrete

subspace. In practice this is done by dividing the solution domain
into 𝑁el elements𝑇𝑖 that each contain a set of nodal basis functions
𝜙 𝑗 . The discrete solution 𝒖ℎ can then be expressed as a linear com-
bination of the nodal basis functions with coefficients given by the
nodal degrees of freedom 𝒖 𝑗 , e.g.:

𝒖ℎ (𝑿 ) = 𝜙 𝑗 (𝑿 )𝒖 𝑗 . (21)
This enables us to evaluate or interpolate the solution at any point in
the domain. We now apply this approach to discretize our internal
energy of the micropolar continuum given by

𝐸int =
∫
Ω
Ψ(𝑿 )𝑑𝑿 ≈

𝑁𝑒∑︁
𝑖

∫
𝑇𝑖
Ψ(𝑿 )𝑑𝑿 , (22)

where we use Ψ(𝑿 ) as a shorthand implying the evaluation of the
strain measures E and Γ at point 𝑿 . To evaluate the element-wise
integrals we transform the integral to a reference element 𝑇 where
we apply a quadrature rule for numerical integration

𝑁𝑒∑︁
𝑖

∫
𝑇𝑖
Ψ(𝑿 )𝑑𝑿 =

𝑁el∑︁
𝑖

∫
𝑇
Ψ(𝝃𝑖 (𝑿̂ )) |det(J𝑖 (𝑿̂ )) |𝑑𝑿̂ (23a)

≈
𝑁el∑︁
𝑖

𝑁qp∑︁
𝑗

𝑤 𝑗 Ψ̂(𝒑̂ 𝑗 ) |det(J𝑖 (𝒑̂ 𝑗 )) | , (23b)

where quantities with a hat indicate quantities in the reference
element 𝑇 , 𝒑̂ 𝑗 and𝑤 𝑗 are the quadrature points and weights in the
reference element, 𝝃𝑖 : 𝑇 → 𝑇𝑖 is the mapping from the reference
element to the corresponding element 𝑇𝑖 in material coordinates
and J𝑖 is the Jacobian of this mapping.

As can be seen in Eq. (23b), in practice we have to interpolate
our degrees of freedom to the quadrature points in the reference
element. While this is trivial for the displacement field as shown in
Eq. (21), this is not directly applicable to the microrotation field R
which we need for both of the micropolar strain measures E and Γ
to evaluate the corresponding energy contributions.

4.2.1 Discretizing the microrotation field. Common rotation repre-
sentations like rotation matrices or unit quaternions do not form a
vector space and so a linear combination of them as part of FEM
might not result in a proper rotation. Therefore, we avoid interpolat-
ing rotations with a naive linear combination. Before we introduce
our formulation, let us first briefly discuss alternatives suggested
in the literature.

Previous approaches. An approach commonly found in the me-
chanics literature (see e.g. [Bauer et al. 2010; Münch 2007; Sansour
and Wagner 2003]) is based on the linear combination of rotation
vectors (also known as Euler vectors) which represent a rotation
as a vector 𝚯 = 𝜃𝒏 ∈ R3 where 𝜃 is the angle of rotation and 𝒏 the
normalized axis of rotation. This corresponds to interpolation in
the tangent space of the identity rotation. However, interpolating
large rotations far away from the identity rotation in this way can
lead to “distorted” results and the mapping between representations
introduces singularities that have to be considered.

A generalized concept of interpolation that actually respects
the nonlinearity of 𝑆𝑂 (3) can be defined using the Riemannian
weighted center of mass and a respective distance metric [Moakher
2002]. In our context this would result in nonlinear optimization
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problems locally in each element which can be solved iteratively,
e.g., using the “Spherical Weighted Averages” algorithm proposed
by Buss and Fillmore [2001]. Except for special cases however, no
closed form solution for more than two rotations (which corre-
sponds to spherical linear interpolation) exists. For implicit time
integration this poses problems as differentiation of this procedure
is practically only possibly using algorithmic differentiation.

As discussed in related work, we consider the Geodesic FEM
framework introduced by Sander [2012] to be too complex and
not computationally efficient enough for direct application in the
context of physically-based animation, and we pursue an alternate
approach instead.

Quaternion linear blending. In QLB, rotations are blended by com-
puting a linear combination of a set of unit quaternions followed by
renormalization [Kavan and Žára 2005]. While the method appears
to be well suited for e.g. skinning in practice, a few theoretical
considerations make it slightly less attractive for use in FEM. Error
bounds for the interpolation between two quaternions were pre-
sented but the situation is unclear for more than two. Furthermore,
the given analysis of the error bounds assumes a maximum angle
between the vector representations below 90 degrees. This can be
trivially ensured in case of two quaternions by flipping one of their
signs. However, for more than two quaternions this requirement
can only be satisfied with respect to one of them, not between
all pairs. Similar to the approach of interpolating rotation vectors,
these considerations are related to directly interpolating possibly
large rotations far away from the identity rotation.

We expect these problems to be much less relevant in practice
for a method that instead either works with incremental rotations
with respect to the previous timestep or with angular velocities.
While we propose an approach based on angular velocities in the
following, we note that it would be interesting to investigate the
feasibility and accuracy of a system based on position-level DOFs
when interpolating (possibly incremental) quaternions in the fu-
ture.

Interpolating angular velocities. In contrast to the previously
mentioned methods, we propose the following scheme for the dis-
cretization of the micropolar rotations. As already suggested by our
incremental potential formulation in Section 4.1, we will continue
working with velocities as degrees of freedom. Both the displace-
ment velocity 𝒗 as well as the microrotation angular velocity 𝝎 can
be linearly interpolated as elements of R3. This allows us to eval-
uate the nodal degrees of freedom (𝒗𝑖 and 𝝎𝑖 ) at any point in the
domain. To evaluate the involved energies in terms of the velocity
DOFs, we substitute all occurrences of displacements and rotations
with a corresponding time integration update rule depending on
the solution of the previous timestep and the updated velocities
from the current Newton iteration. For the displacement we use
backward Euler for the time integration and substitute

𝒖 (𝒗) = 𝒖0 + Δ𝑡𝒗 , (24)

where 𝒖0 is the solution of the previous timestep and 𝒗 is the veloc-
ity in the current Newton step. Let 𝝎𝑞 denote the purely imaginary
quaternion with its coefficients given by the vector 𝝎. For the

rotation we could then employ the quaternion exponential func-
tion [Grassia 1998] to obtain

𝒒(𝝎) = exp
(
Δ𝑡

2 𝝎𝑞

)
𝒒0 , (25)

which is the exact solution for a constant angular velocity over the
timestep [Solà 2017]. However, we prefer the approximation

𝒒(𝝎) ≈ 𝒒̃(𝝎)
∥𝒒̃(𝝎)∥ with 𝒒̃(𝝎) = 𝒒0 +

Δ𝑡

2 𝝎𝑞𝒒0 (26)

as it is easier to differentiate and does not require “sinc” functions
for a singularity free implementation. We implemented both vari-
ants and the error of the latter was negligible for typical timestep
sizes (Δ𝑡 around 10𝑚𝑠).

This approach of interpolating nodal angular velocities followed
by time integration is essentially equivalent to interpolating nodal
incremental rotation vectors relative to the rotation of the previous
timestep (in contrast to using total rotation vectors relative to the
identity rotation as discussed before). This can be seen as the incre-
mental rotation vector over a timestep Δ𝑡 with constant angular
velocity 𝝎 is given directly by 𝚯 = Δ𝑡𝝎 which can then be mapped
to a proper rotation using the exponential map. We explicitly chose
to use angular velocities here as they are anyway needed in the
context of dynamic simulations.

However, at this point we did not solve the problem completely,
as the quaternion update rules depend on the rotation from the
previous timestep 𝒒0 at the point of evaluation (i.e. the quadrature
point). While the updated displacement 𝒖 (𝒗) from Eq. (24) can be
trivially evaluated everywhere in the domain because 𝒖0 (𝑿 ) can be
reconstructed everywhere by only keeping track of the nodal values
and evaluating their FEM interpolation, this is not the case for 𝒒0.
Again, because rotations do not form a vector space we cannot
easily reconstruct 𝒒0 (𝑿 ) from nodal values. However, as FEM only
requires the evaluation at a (usually constant) set of quadrature
points 𝑝𝑖 , we can solve this by simply storing the rotations at the
quadrature points 𝒒(𝒑̂𝑖 ) over time in addition to the nodal values.

To summarize the handling of rotations in our implementation,
here is an overview of the steps deviating from a standard nonlinear
FEM implementation:

(1) Before simulation: initialize “old” rotations 𝒒0 at the quadra-
ture points 𝒑̂𝑖 to be consistent with nodal initial values, e.g.,
𝒒0 (𝒑̂𝑖 ) ← 𝒒id.

(2) During Newton iterations: Using Eq. (26) compute the cur-
rent 𝒒(𝒑̂𝑖 ) with the stored 𝒒0 (𝒑̂𝑖 ) and linearly interpolated
current 𝝎 (𝒑̂𝑖 ).

(3) After Newton converged: Interpolate the converged solution
𝝎 to quadrature points again and update 𝒒0 (𝒑̂𝑖 ) for use in
the next timestep.

There seems to be evidence that the interpolation of incremental
rotations that are used to update history variables at the quadrature
points can lead to an artificial path dependence of the solution [Cr-
isfield and Jelenić 1999; Sansour and Wagner 2003]. However, in
practice we did not notice any qualitative problems of this kind and
we consider the accuracy gain of interpolating only small incre-
ments in contrast to possibly large total rotations to be of higher
importance in the application of computer graphics. We evaluate
the accuracy of this interpolation procedure in Section 5.1.



Micropolar Elasticity in Physically-Based Animation SCA ’23, August 04–06, 2023, Los Angeles, CA

4.2.2 Evaluation of rotation gradients. In the previous section we
introduced our interpolation scheme for themicrorotationsR which
we now represent using quaternions. In addition to the rotations
themselves, we have to evaluate spatial gradients of the rotations
in order to compute the wryness tensor Γ introduced in Eq. (6) at
the quadrature points.

First of all, we want to be able to compute the wryness tensor
directly from the gradient of the rotation quaternions in order to
avoid unnecessary conversions between representations. To do
so, we generalize the formulation employed by Kugelstadt and
Schömer [2016] for the rotation gradient in rods. For a quaternion
𝒒, let vec(𝒒) ∈ R3 denote the coefficients of its imaginary part and
conj(𝒒) denote its conjugate quaternion. Then, the wryness tensor
Γ can be expressed in terms of unit quaternions by

Γ = 2 vec(conj(𝒒)𝒒,𝑖 ) ⊗ 𝒆𝑖 − Γ0 . (27)

Evaluating the spatial derivatives 𝒒,𝑖 of the rotations while taking
into the account the nonlinearity of Eq. (26) is quite complex. In-
stead, we make an approximation by evaluating them using the
FEM basis gradients

𝒒,𝑖 =
𝜕𝒒

𝜕𝑿𝑖
≈ 𝜕𝜙𝑘

𝜕𝑿̂ 𝑗

𝜕𝑿̂ 𝑗

𝜕𝑿𝑖
𝒒𝑘 =

(
J−𝑇

𝜕𝜙𝑘

𝜕𝑿̂

)
𝑖

𝒒𝑘 , (28)

where 𝑘 denotes the summation over the nodes of an element. We
evaluate the error of this approximation in Section 5.1.

4.2.3 Choice of quadrature rule. While our approach is not lim-
ited to linear elements, we follow common practice in computer
graphics and use linear tetrahedral meshes in our implementation.
In classic hyperelasticity, a single quadrature point is sufficient to
accurately integrate any strain energy as linear elements have a
constant deformation gradient. However, this does not apply to the
wryness tensor Γ due to the nonlinear interpolation of the rota-
tions. Using a one point quadrature rule can lead to drifting nodal
rotations and oscillating angular velocities that do not affect the
overall energy of the system. Behavior like this is known in the
FEM community as hourglass or zero-energy modes [Kosloff and
Frazier 1978]. However, in contrast to classic elasticity, it manifests
in the rotation field and not in the displacement field in our case.
Over time, this can then indirectly affect the displacements due to
the coupling of the fields. In the case of linear tetrahedrons this
problem was completely eliminated for all of our experiments by
using a standard four point Gauss quadrature rule (see e.g. [Shunn
and Ham 2012]).

5 RESULTS
In the following we validate our proposed discretization of microp-
olar elasticity and show examples that demonstrate its applicability
in physically-based animation.

For the experiments we use a fixed gradient norm stopping toler-
ance of 10−8 for Newton’s method. In each step, we solve the linear
system with CG, preconditioned with a 3 × 3 block diagonal Jacobi
preconditioner and a relative residual norm stopping tolerance of
10−12. In the following, we will use the “angular distance” between
two rotations as an error metric which can be computed as the
angle required to rotate one quaternion onto the other which is

Figure 2: Twisted cantilever for validation of our discretiza-
tion. Coordinate frames visualize the microrotation field R
which qualitatively follows the geometric rotation.

given by

dist(𝒒1, 𝒒2) = arccos(2 vec(𝒒1) · vec(𝒒2) − 1) .

If not specified otherwise, the microrotation field is initialized to be
uniform and parallel to the global coordinate axes, i.e. the material
is assumed to be “flat” in its initial configuration. We use penalty
forces to apply boundary conditions in terms of target velocities
and angular velocities.

5.1 Validation of our discretization
For a basic verification of our discretization, we simulate a clamped
cantilever (0.05m × 0.05m × 0.6m, 𝐸 = 1 · 104 Pa, 𝜈 = 0.3, 𝜇𝑐 = 𝜇,
𝐿𝑐 = 0) that is discretized with around 9200 linear tetrahedrons in
zero gravity. Both ends are rotated in opposite directions with a
constant angular velocity of 𝜔BC = 45 deg/s over a duration of 10 s
with a timestep of Δ𝑡 = 10ms.

The state of the cantilever at the end of the last time step is
shown in Fig. 2. To converge, 1-2 Newton iterations were required
per timestep with 65 CG iterations on average. Over the whole
mesh the maximum “twist” (angular distance) between nodal ro-
tations within one element evaluates to 31 degrees with the given
discretization. Qualitatively, the microrotation field R follows the
geometric deformation of the mesh. This is confirmed by an aver-
age angular distance of the microrotations R to macrorotations R
(computed using the polar decomposition of F) of only 2.62 degrees
at the end of the simulation.

To measure the accuracy of our angular velocity based interpo-
lation approach for the microrotations (Section 4.2.1) we apply the
spherical weighted averages algorithm [Buss and Fillmore 2001]
to compute the microrotations at all quadrature points to high
accuracy (stopping tolerance of 10−14). For comparison, we also im-
plemented an interpolation scheme based on rotation vectors with
handling for large rotations as described by Münch [2007, Chap-
ter 2.5]. The angular distance of the two interpolation schemes
versus the reference solution is shown in Fig. 3. We can see that
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Figure 3: Max. error of rotations at quadrature points com-
pared to the solution obtained with spherical averaging.

our angular velocity based interpolation yields more accurate re-
sults over the whole simulation. For much longer simulations than
shown here, it would be possible to even further reduce the error by
regularly “resetting” the quadrature point microrotations between
timesteps using results obtained from spherical blending.

Applying algorithmic differentiation with TinyAD [Schmidt et al.
2022] to the spherical weighted averages algorithm, we can also
compute reference values for the rotation gradient and curvature
measure Γ. In comparison to this reference solution, our curvature
measure based on the FEM interpolation of the rotation gradient
(Section 4.2.2) has a maximum relative error of only 0.8% at the end
of the simulation.

Overall, we conclude that our discretization appears to correctly
handle large rotations of more than 360 degrees and in particular
our angular velocity based interpolation approach achieves an even
smaller error than the prevalent interpolation scheme based on
rotation vectors.

5.2 Bending and torsion stiffness
In this section we demonstrate the enhanced level of control that
micropolar materials can provide in comparison to classic materials,
especially in terms of their ability to impose anisotropic bending
and torsion stiffness in addition to stretching and shearing.

5.2.1 Stretchy sheet. Figure 1 (left) shows a comparison between
the classic Neo-Hookean material model and the micropolar ma-
terial model for a clamped volumetric thin sheet colliding with a
sphere. This experiment aims to simulate a deformable object that
can stretch but that is stiff to bending. Classic materials can only
directly model stiffness to stretching and shearing, which leads to
their resistance to bending being directly imposed by the thickness
of the object in conjunction with the stiffness. As a consequence,
the expected material behavior is impossible to obtain. With mi-
cropolar materials we can specify stretching and bending stiffness
independently, allowing us to achieve the desired effect.

5.2.2 Hollow bunny. Figures 4 and 5 demonstrate another appli-
cation of micropolar materials in computer graphics, where we
compare it with classic Neo-Hookean in two scenes involving com-
plex and thin geometries. The objective is to simulate an object
that is soft to stretch but retains its shape under gravity. Classic
materials often require a certain stiffness to prevent collapse, result-
ing in a stiffer material than desired for the scene. With the added

(a) Classic Neo-Hookean, soft (b) Micropolar, 𝐿𝑐 = 0

(c) Classic Neo-Hookean, stiff (d) Micropolar, anisotropic

Figure 4: A hollow bunny (1m tall, 2 cm thickness) subject
to gravity. With classic elasticity (left column) the bunny
is either soft and collapses (𝐸 = 5 · 104 Pa) or stiff and able
to support its weight (𝐸 = 2 · 105 Pa). With a soft micropolar
material (𝐸 = 5 · 104 Pa), the bunny collapses without curva-
ture energy (top right) but with some anisotropic bending
stiffness (𝜇𝑐 = 𝜇, 𝐿𝑐 = 1.0, C𝑦𝑥 = C𝑦𝑧 = 1, C𝑦𝑦 = 20) the soft
material can support the weight without becoming rigid.

Figure 5: We clamp the ears of the hollow bunny and remove
the floor. While the bunny with the stiff Neo-Hookean (left)
from Fig. 4 swings almost rigidly, the micropolar material
with bending stiffness (right) that previously was able to
support the bunny’s weight is able to stretch and deform.

micropolar bending stiffness however, it is possible to prevent the
object from collapsing, while keeping it soft and “stretchy”.

5.3 Rest curvature experiments
In addition to the higher degree of control over the stress-strain
relationship, micropolar materials allow for deformations induced
by changing the volumetric rest pose curvature, which we will
showcase in the following experiments. We can also imagine de-
formation related to more complex physical phenomena, such as
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Figure 6: Five volumetric rods with helicoidal shape are de-
formed by modifying their rest pose curvature over time
with different intensities until they form a helix.

burning, melting or wetting, could be achieved by tying the micro-
rotation curvature to other fields such as temperature or humidity,
but such experiments are out of scope for this work.

5.3.1 Helix. In this experiment we use the micropolar material
in five volumetric rods to obtain a helix shape, see Fig. 6. This is
achieved by scaling up a rest pose curvature around the vertical
axis, which induces a circular deformation, in addition to torsion
around the rods principal direction, which adds a twist that results
in each road forming a helix. This experiment validates our gen-
eralization to higher dimensions as this simulation matches the
expected behavior for one dimensional rods shown by Kugelstadt
and Schömer [2016]. Note that, in contrast to Cosserat rods, our
simulated rods are volumetric and can be stretched and compressed
in directions normal to the centerline.

5.3.2 Lotus flower. Similar to the previous experiment, we induce
deformations by modifying the rest microrotation field of three
volumetric thin sheets to form a lotus-like shape, see Fig. 1 (right). In
this case, the prescribed deformations are dependent on time and the
two-dimensional median plane of the sheets which shows that our
generalized solution works well for higher than one dimensionally
dominated bodies.

5.3.3 Lotus bowl. Our incremental potential formulation works ro-
bustly when integrated in a standard computer graphics solver
pipeline, including IPC-style contact handling (Section 4.1), as
demonstrated by the simulation shown in Fig. 7. Four lotus flowers
are dropped in a bowl where they collide with each other while the
elastic bending resistance maintains the shape that was prescribed
through the rest pose curvature.

5.4 Two-dimensional planar shell model
To demonstrate that we can also apply micropolar materials in two
dimensions with only minor modifications, we simulate an initially
planar two-dimensional shell clamped on two sides under gravity as
shown in Fig. 8. For the microrotations, our discretization described
in Section 4.2.1 can be used without modification. The mid-plane
deformation of the plate is described by the deformation gradient
F ∈ R3×2 which can be computed as described by Kim [2020]. The
shell bending energy can be formulated in terms of the orientation
of the director 𝒅3 (which is orthogonal to the plate in the rest pose)

Figure 7: Four lotus flowers are dropped into a bowl. They
collide dynamically with an IPC-inspired contact model.

Figure 8: A two-dimensional shell clamped on two sides un-
der gravity. The micropolar shell model contains a continu-
ous bending energy analogous to the three-dimensional case
(left: low bending stiffness, right: higher bending stiffness).

and the wryness tensor from Eq. (6) reduces to

Γplate = R
𝑇

(
𝜕𝒅3
𝜕𝑿1
⊗ 𝒆1 +

𝜕𝒅3
𝜕𝑿2
⊗ 𝒆2

)
.

The resulting model is a Reissner-Mindlin type plate which has a
virtual thickness that introduces a resistance to shearing [Neff et al.
2010; Sander et al. 2016]. However, in contrast to the corresponding
models from classic elasticity, higher-order gradients and C1 conti-
nuity are not needed for the micropolar model. An extension to non-
planar rest configurations is possible but requires a more rigorous
derivation involving concepts from differential geometry, similar
to the approach described by Clyde et al. [2017, Supplemental] for
Kirchhoff-Love shells. As with other shell models, micropolar shells
can also suffer from membrane locking [Quaglino 2012], unless at
least second-order elements are used for the discretization of the
displacement. A common work-around in computer graphics is to
combine a very soft bulk stiffness with strong strain-limiting [Li
et al. 2021] which we also use for the soft case in Figure 8.

6 CONCLUSION
In this work, we introduced two and three-dimensional microp-
olar materials to the physically-based animation community and
proposed a consistent discretization well suited for the application
in this field. We propose a FEM approach that accurately handles
large rotations and integrates well with an incremental potential
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formulation. Our experiments showcase the extra control that mi-
cropolar materials offer in simulations that could not be achieved
with classic materials, such as simulating soft materials that are
stiff to bending. We also demonstrate the potential of deforma-
tions induced by changes in the rest curvature in scenes with large
deformations and contacts.

In comparison to classic models, we have to solve for twice the
amount of degrees of freedom which can slow down important
parts of the simulation, including computation of element matrices,
assembly, and global system solves. However, the impact of this
difference varies depending on the scene and other effects present
such as contacts and material stiffness.

Our proposed formulation is built around a backward Euler
time discretization for positions and a first-order approximation
for rotations. To reduce numerical damping and to take advantage
of proper damping models (e.g. [Brown et al. 2018; Xu and Barbič
2017]) we would like to investigate the applicability of higher-order
integration methods like BDF2 or DIRK methods [Löschner et al.
2020] in the future.

Simulation of complex and delicate materials is a very interesting
path forward for micropolar models in computer graphics. While
we showed creative and artistic applications for the application
of micropolar materials, we believe that deformations induced by
controlling the microrotation field can be useful for the simulation
of complex phenomena such as wetting or burning, causing plas-
tic deformation [Grammenoudis and Tsakmakis 2005] where the
material bends and deforms in intricate ways.
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