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Figure 1: We demonstrate the effectiveness of our post-processing approach in a scene with dynamic rigid bodies (1 million fluid particles).
The images show the particles (left), surface reconstruction with our proposed smoothing (middle) and surface reconstruction without
smoothing (right). Our method significantly reduces the bumpiness of the surface while preserving splashes and isolated particles.

Abstract
In physically-based animation, producing detailed and realistic surface reconstructions for rendering is an important part of a
simulation pipeline for particle-based fluids. In this paper we propose a post-processing approach to obtain smooth surfaces
from “blobby” marching cubes triangulations without visual volume loss or shrinkage of drops and splashes. In contrast to other
state-of-the-art methods that often require changes to the entire reconstruction pipeline our approach is easy to implement and
less computationally expensive.
The main component is Laplacian mesh smoothing with our proposed feature weights that dampen the smoothing in regions of
the mesh with splashes and isolated particles without reducing effectiveness in regions that are supposed to be flat. In addition,
we suggest a specialized decimation procedure to avoid artifacts due to low-quality triangle configurations generated by march-
ing cubes and a normal smoothing pass to further increase quality when visualizing the mesh with physically-based rendering.
For improved computational efficiency of the method, we outline the option of integrating computation of our weights into an
existing reconstruction pipeline as most involved quantities are already known during reconstruction. Finally, we evaluate our
post-processing implementation on high-resolution smoothed particle hydrodynamics (SPH) simulations.

CCS Concepts
• Computing methodologies → Shape modeling; Animation;

1. Introduction

Particle-based methods are often used to simulate fluids, espe-
cially in the field of physically-based animation. These methods
are able to model flow behavior without having to explicitly track
surfaces and can therefore efficiently simulate phenomena with

† equal contribution

complex fluid boundaries, like splashes or interaction with solids
of arbitrary shape. One of the most popular particle-based meth-
ods is Smoothed Particle Hydrodynamics (SPH) [GM77,KBST22],
which can be used for a wide range of materials, such as flu-
ids [BK17], elastic solids [KBFF∗21] or snow [GHB∗20]. How-
ever, visualizing the particle-based fluid as a continuous surface is
not a straightforward process, as most rendering methods need an
explicit representation of the fluid surface.
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Extracting high quality surfaces from the simulated particle
data has proven to be a challenging task. Marching cubes (MC)
produces meshes with bad topology and irregularly placed par-
ticles cause bumps in the reconstructed surface. State-of-the-art
methods use anisotropic kernels [YT13] or constrained optimiza-
tion [BGB15] to solve this problem, but are harder to implement,
involve a lot of parameters and are computationally expensive.

Instead of modifying the surface reconstruction it is also possible
to remove the bumps in a post-processing step. Applying Laplacian
smoothing does result in smooth surfaces, but at the cost of se-
vere volume shrinkage, causing smaller drops to collapse to points.
While volume preserving methods like Taubin smoothing [Tau95]
or HC smoothing [VMM99] exist, those act as low-pass filters re-
moving high-frequency noise and are therefore not able to effi-
ciently flatten out the planar regions while preserving detail of simi-
lar scale in complex parts of the mesh. Akinci et al. [AAIT12] pro-
pose a post-processing pipeline designed specifically for particle-
based fluids, based on adaptive decimation followed by subdivi-
sion. This method is again computationally expensive.

We propose a new post-processing pipeline for MC surfaces us-
ing weighted Laplacian smoothing, retaining the simplicity of the
method while solving the main issues with minimal effort. The new
method is based on the observation, that features we want to pre-
serve occur in regions with fewer particles. Intuitively, we use a
quantity based on the number of particle neighbors to drive the
amount of smoothing for each vertex. We further noticed how spe-
cific triangle configurations created by standard MC can lead to
artifacts during smoothing. As these configurations follow certain
patterns, we show how they can be detected and removed using few
well-defined edge collapses. Lastly, we apply an additional post-
processing step, in which smoothed normals are computed for each
vertex, causing the remaining bumps to become less noticeable
when using physically-based rendering. We evaluate our pipeline
on SPH fluid simulations, while using standard MC to construct
the surfaces, an example of which is shown in Fig. 1.

2. Related Work

The problem of producing realistic surfaces from particle data is
well known in the field of visual computing and many approaches
have been developed to solve the previously stated issues. While
some change the definition of the surface, others focus on the mesh
generation step by improving the MC algorithm. It is also possi-
ble to enhance the quality of the reconstructed surface using mesh-
based post-processing approaches.

Depending on the application, different surface descriptions of
particle-based fluids can be beneficial. Surface tracking meth-
ods which, e.g., evolve a mesh during simulation [YWTY12]
are mostly motivated by the requirements of specific physical
fluid models (e.g., surface tension). For post-processing, implicit
surface-based approaches are typically more efficient. Alterna-
tively, surface reconstruction restricted to screen-space [MSD07]
can be very efficient especially for real-time applications, but re-
quires tight coupling with the rendering pipeline for practical work-
flows. Instead, we focus on offline reconstruction of the entire fluid
surface from an implicit surface definition.

Surface definition In computer graphics, the rendering of deform-
ing volumes using an implicit surface was pioneered by the “meta-
balls” approach introduced by Blinn [Bli82]. In this spirit, most
methods for particle-based surface reconstruction define the fluid-
surface as the isosurface of a scalar field in 3D space. One of the
most straightforward definitions is the “color field”, where each
particle is assigned the value of 1, which is then interpolated over
the domain [MCG03]. As a result, the surface closely follows the
particles but due to their varying distances, bumps will appear.

Zhu and Bridson [ZB05] instead define the surface as the zero
level-set of a signed distance field, based locally on weighted
averages of the particle positions. Building on this, Adams et
al. [APKG07] propose to propagate the particles’ distances to the
surface between timesteps and to use them in the computation of
the distance field.

Another way to alleviate bumpiness is to define the surface as
a level-set satisfying a constrained optimization problem, which
minimizes the thin-plate energy. In these approaches, the surface
is bound to lie in between two signed distance fields, one corre-
sponding to the minimum and the other to the maximum desired
distance to the particles [Wil08, BGB15].

Yu and Turk [YT13] propose to use anisotropic kernels when
defining the scalar field, to not only reproduce smooth flat surfaces
but also extract sharp features from the data set. This is achieved by
scaling the kernel functions based on a principal component analy-
sis performed for the covariance matrix of each particle.

The main drawbacks of these more sophisticated approaches in-
clude increased computational cost, the need to tune multiple pa-
rameters and much higher implementation complexity.

Marching Cubes The most popular method to construct a trian-
gle mesh for the isosurface of a scalar field is the Marching Cubes
(MC) algorithm [LC87]. It partitions the domain using a regular
cube grid and the scalar field values are computed only at its ver-
tices. The popularity of standard MC can in part be attributed to
its relative simplicity, as the grid consists of uniform cubes, which
allows for intuitive indexing of vertices based on their positions.

Efficiency can be improved by computing the scalar field values
only at grid points which lie close to surface particles [AIAT12].
Additionally, the triangle quality of the produced meshes can be im-
proved. Raman and Wenger [RW08] propose the use of an extended
lookup table, to avoid generating short edges due to the surface in-
tersecting a grid cube close to a corner, however this can result in
non-manifold meshes. An alternative approach with similar goals
based on displacement and snapping was proposed by Moore and
Warren [MW91, MW92].

Dual methods place mesh vertices inside the grid cubes instead
of on the grid edges [Gib98, JLSW02]. While the resulting meshes
usually have better topology and represent sharp features better,
finding optimal positions for the mesh vertices is more complicated
and benefits for fluids are not clear. Another family of methods
is marching tetrahedra [DK91, GH95] which evolved from works
aiming to solve ambiguities in the original marching cubes formu-
lation [Blo88]. Williams [Wil08] proposes to partition the domain
of particle-based fluids with specific tilings of tetrahedra which
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eliminates mesh vertices with a valence of four. These vertices were
identified to cause issues when Laplacian operators are applied to
triangle meshes. However, this leads to less intuitive indexing of
grid vertices and requires more implementation effort.

For a more general overview of surface reconstruction methods,
we refer to the survey of de Araújo et al. [dALJ∗15].

Post-processing To remove bumps and noise from a surface mesh,
a large variety of smoothing methods can be found in the literature.
Laplacian smoothing and its variants are arguably the most com-
monly used family of methods due to their simplicity and effec-
tiveness.

Depending on the application of Laplacian smoothing, different
combinations of temporal and spatial discretizations of the under-
lying diffusion equation can be chosen [BKP∗10]. The most sim-
ple variant is uniform Laplacian smoothing with explicit timestep-
ping which iteratively moves each vertex to the mean position of its
neighbors. While it is cheap to evaluate, the uniform Laplacian is
a relatively inaccurate discretization on irregular meshes resulting
in tangential drift. Alternatively, the cotangent Laplacian assigns
higher weights to shorter edges and is often used to avoid this drift
(see, e.g., [DMSB99]). In our application however, tangential drift
could also be seen as a welcome side effect for MC meshes, as it
leads to more uniform triangles.

The main drawbacks of Laplacian smoothing on its own are loss
of detailed features and volume shrinkage. For fluid surface meshes
this can cause droplets to degenerate after only a few iterations. Vol-
ume preserving approaches [Tau95, VMM99] effectively remove
high-frequency noise from laser scanned meshes without changing
the overall shape. Other methods assign smoothing weights based
on local curvature [NISA06], causing vertices representing sharp
features to be smoothed less. Unfortunately, none of these meth-
ods work particularly well for particle-based fluids, as the surface
bumps have a similar scale as the particles. Therefore, the bumps
cannot be considered high-frequency noise, nor do they necessarily
have much less local curvature than isolated droplets.

Another approach is to first smooth the normal field, followed by
updating vertex positions to best fit the smoothed normals [Tau01,
OBS02]. As the fitting involves solving a large linear system, this
approach is more expensive than other smoothing methods.

For particle-based fluids, Akinci [Aki14] proposes to use in-
cremental decimation followed by subdivision to improve surface
quality. However, incremental decimation can be expensive (rela-
tive to explicit smoothing) and is hard to parallelize.

Our method uses Laplacian smoothing with positional weights,
similar to the approach by Nealen et al. [NISA06]. We do not want
to lose details in high curvature regions of droplets and splashes,
and therefore apply smoothing only in areas with many neighbor-
ing particles. Additionally, we use normal smoothing similar to the
method of Taubin [Tau01] to make the bumps less noticeable dur-
ing rendering, but without further fitting vertex positions.

3. Method

Our approach differs from other smoothing methods by using
neighborhood information from the original particle set to drive the

amount of smoothing for each vertex. The main steps of the over-
all surface reconstruction pipeline are mesh generation using MC,
computation of the positional weights and the smoothing itself. We
also show how certain triangle configurations leading to artifacts
during smoothing can be removed using specialized decimation.
As a last step, we detail how we compute a smooth normal field.

3.1. Preliminaries

Before introducing our post-processing steps, we first summarize
how an initial fluid surface can be reconstructed followed by the
basics relevant for our smoothing approach.

Marching Cubes Reconstruction Our post-processing pipeline is
designed for meshes generated using MC. As we want to show the
full capabilities of our pipeline, we assume a standard implementa-
tion of the reconstruction procedure, without special modifications
to remove bumps from the surface or improve triangle quality.

For this purpose, we use the color field based definition of the
fluid surface combined with SPH interpolation to compute the
level-set function value Φ at the MC grid points. Given a parti-
cle set P , a grid point xi, an isosurface threshold t and a kernel W
with smoothing length h we get:

Φ(xi) = ∑
j∈P

m j

ρ j
W (xi −x j,h)− t , (1)

where m j is the mass of particle j and ρ j is its density, which is
determined by SPH interpolation as well. Since the kernel is zero
for all particles farther away than a predefined cutoff distance, this
sum only needs to consider particles close to the grid point.

Given the level-set values at all grid points, we use MC [LC87] to
obtain a triangulation. Here, the vertices of each cube are marked
as either inside or outside the surface according to their sign, re-
sulting in one of 28 = 256 configurations. On each edge with a sign
change, an isosurface vertex is placed, and a lookup table is used to
determine the corresponding triangulation. The surface vertex po-
sitions themselves can be approximated using linear interpolation:

x = xa +
t −φ(xa)

φ(xb)−φ(xa)
(xb −xa) , (2)

where x is the estimated position of the surface vertex, xa is the
grid point above and xb is the one below the surface.

As a post-processing method, our approach does not depend on
modifications or direct coupling to the MC implementation, and
we will therefore consider it to be a black box in the following
sections. As inputs we only expect a closed mesh without non-
manifold edges or vertices representing the fluid surface, along with
the original particle set.

Explicit Laplacian Smoothing Laplacian smoothing methods
aim to improve mesh quality by moving vertices based on the po-
sitions of their neighbors. Given a mesh M = {E,V}, with edges E
and vertices V , the neighborhood Vi of vertex i ∈ V is defined as
the set of all vertices it shares an edge with. In explicit Laplacian
smoothing, each vertex is iteratively moved towards a weighted av-
erage position of its neighbors. The corresponding update vector
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(a) No smoothing (b) Naive smoothing

(c) Our smoothing weights (d) Our smoothing with weights

Figure 2: Application of 25 uniform Laplacian smoothing itera-
tions leads to loss of volume especially for splashes and isolated
particles (b). Our neighbor count based weights (c) are evaluated
on the mesh ranging from 0 (blue) to 1 (red). 25 smoothing iter-
ations with the weights result in smooth surfaces for flat regions
while splashes are preserved (d).

for a vertex i with position xi is computed as:

∆xi = ∑
j∈Vi

wi j(x j −xi) with ∑
j

wi j = 1 . (3)

The weights wi j are associated with the edge (i, j). For the uniform
Laplacian, the weights are given by wi j = 1/|Vi| and depend only
on the valence |Vi| of the vertex being updated. The new position
of the vertex for iteration n+1 is then set to:

xn+1
i = xn

i +β∆xn
i , (4)

where β is a scaling factor between 0 and 1. A small β will de-
crease convergence speed, as the vertices are only moved by short
distances corresponding to a smaller timestep or smaller diffusion
coefficient. For β = 1 the vertex would move directly to the mean
position of its neighbors, but as all vertices are updated in each it-
eration, this is not always optimal. Especially in noisy meshes, the
neighbors might move in the opposite direction as the vertex itself
causing overshooting.

With these fundamentals in mind, we can now introduce our pro-
posed post-processing pipeline.

3.2. Our Particle Neighborhood-Based Smoothing

Applying uniform Laplacian smoothing directly to the MC surface
reconstruction of a particle-based fluid can lead to severe shrink-

age of the fluid volume and loss of isolated particles. The uniform
Laplacian has the biggest effect in strongly convex vertex neigh-
borhoods. Therefore, with an increasing number of smoothing it-
erations single particles rapidly collapse into points followed by
volume loss in thin “splash” regions (see Fig. 2b).

To avoid these artifacts, we suggest employing positional feature
weights λi ∈ [0,1] (see e.g. [NISA06]) that dampen the influence of
the Laplacian smoothing in the affected regions:

xn+1
i = xn

i +λi∆xn
i with λi ∈ [0,1] . (5)

We observe that artifacts due to loss of volume start to appear
most quickly in regions with high particle neighborhood deficien-
cies such as isolated particles, splashes and “corners” or “edges”
of the fluid between free surfaces of the fluid and boundaries. Ide-
ally, vertices originating from the reconstruction of single particles
should only be smoothed very little or not at all, whereas vertices
on the surface of a half-space filled with particles should experience
the maximum amount of Laplacian smoothing in order to quickly
approach a plane without any bumps. This suggests using feature
weights that are proportional to some measure of neighborhood de-
ficiency in the fluid.

We suggest defining weights proportional to the number of parti-
cles in a neighborhood as this is a quantity that is intuitive and easy
to compute. Per particle this quantity would be given trivially by

N j = ∑
i∈N j

1 , (6)

where N j is the set of neighbor particles in a radius r around parti-
cle j excluding j itself. However, the weights must be defined at the
vertices of the reconstructed mesh. We chose to use standard SPH
interpolation with 0th-order correction to define a field that can be
evaluated at the vertex positions given by

N(x) =
∑ j∈N (x)

m j
ρ j

N jW (x−x j,h)

∑ j∈N (x)
m j
ρ j

W (x−x j,h)
. (7)

To obtain actual weights from this, the field N(x) has to be mapped
to the interval [0,1]. Using the number of expected neighbors in
a half-space configuration NHS (where we want to apply the most
smoothing), we normalize and clamp the field using

N1(x) = max
{

N(x)
NHS

,1
}
. (8)

For nearly incompressible fluids and constant particle size simula-
tions, the value NHS can be determined once for a specific choice of
SPH kernel (including ratio of particle radius to smoothing length)
and isosurface threshold and then re-used between simulations. In
our experience these are parameters that are seldomly changed
when the user settled for a specific fluid simulation framework.
For compressible simulations and simulations with varying particle
sizes, an automatic procedure or formula to determine this value
would be preferable. Optionally, we can apply a smoothstep func-
tion such as

S(x) = 6x5 −15x4 +10x3 (9)

on top, in order push weights closer to the extremes of the range
(i.e., to smooth vertices with almost no neighbors even less and
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vertices on an almost flat surface even more). Finally, the weight of
a mesh vertex i is then given by

λi = S(N1(xi)) .

Improving temporal coherence Directly using the number of
neighboring particles as given by Eq. (6) can lead to jumps over
time in the weights when particles leave each other’s neighbor-
hoods. This could potentially lead to visible “popping” artifacts
between frames if the same region is smoothed with temporally
discontinuous weights. Therefore, we suggest to weight neighbors
inversely proportional to their distance from a given particle, simi-
lar to the effect of an SPH kernel. However, we do not require any
differentiability or normalization properties for this purpose, so we
suggest using a simple hat-function instead of a smooth kernel:

H(r) =

{
1− |r|

h if |r|< h,
0 else

(10)

with the resulting per-particle weighted neighbor count given by

Ñ j = ∑
i∈N j

H(∥xi −x j∥) . (11)

To correctly normalize and clamp the resulting field, an updated
half-space threshold ÑHS has to be determined, respectively.

These weights vary relatively smooth over a typical mesh surface
and are trivially zero for isolated particles. Fig. 2 visualizes the
effect of this core component of our smoothing procedure.

3.3. Specialized Decimation

While the results from our weighted smoothing already look quite
promising, we occasionally encounter artifacts due to highly vary-
ing triangle quality in the MC output mesh. In particular, when the
isosurface threshold is crossed very close to a vertex of the MC
grid, the resulting triangulation of the neighborhood typically con-
tains triangles that are very stretched and very small in comparison
to the MC edge length. Examples for such low-quality triangle con-
figurations are shown in Fig. 3. As the displacement computed in
Laplacian smoothing depends on the edge lengths between neigh-
boring vertices, this leads to vertices near such configurations ex-
periencing much less smoothing over multiple iterations in com-
parison to vertices further away. This manifests in artifacts that we
dubbed “barnacles” due to their shape in comparison to the sur-
rounding area as shown in Fig. 3.

With uniform Laplacian smoothing it is hard to avoid this prob-
lem. While the cotangent Laplacian eliminates the strong tangential
drift in these configurations, it still suffers from reduced movement
of the affected vertices in normal direction in comparison to more
regularly triangulated regions of the mesh. Without more elaborate
and possibly more expensive timestepping, these artifacts still oc-
cur for the cotangent Laplacian and appear even sharper due to the
missing relaxation of the triangulation. The core of the problem
is the missing information at the center vertex about a sufficiently
large mesh region (relative to surface details) due to the small in-
cident edge lengths. Bi-Laplacian smoothing (see e.g. [KCVS98])
can give slightly better results here as it considers a two-ring of
neighbors and therefore takes vertices into account that lie outside

(a) Two single vertex configurations (b) Double vertex configuration

(c) “Barnacle” artifacts occur during smoothing

Figure 3: Examples for “bad” MC triangulations (a) and (b) gen-
erated when the isosurface threshold is crossed close to a MC grid
point (not shown) that can cause artifacts during smoothing (c).

of the problematic triangle configuration. Nevertheless, it is not suf-
ficient to get rid of the artifacts completely.

Therefore, we pursue a different approach and want to remove
problematic triangulations from the MC output mesh. Let us first
consider specifically decimating only problematic triangle config-
urations, as this is potentially more efficient than a general-purpose
incremental decimation approach (see e.g. [BKP∗10]).

By visual inspection of reconstructed surfaces, we noticed that
the strongest “barnacle” artifacts are mostly caused by two specific
triangle configurations. The configurations are similar to the “single
vertex” and “double vertex” configurations shown in Fig. 3. Larger
“plateaus” surrounded by stretched triangles also occur but usually
do not produce artifacts as strong as the two configurations high-
lighted here. The configurations can be identified by their vertex
connectivity patterns which can be described as follows:

• Single vertex configuration: one center vertex i with valence
of |Vi| = 4 with each connected vertex j with valence |V j| ∈
{4,5,6} and ∑ |V j|= 20.

• Double vertex configuration: two directly connected center ver-
tices i and j with valence of |Vi|= |V j|= 5, two shared neighbor
vertices with valence of 6 and per center vertex two additional
neighbor vertices with valence of 5 respectively (see Fig. 5).

We decided on this connectivity-based detection because it leads to
significantly less candidates that do not create artifacts than if we
would instead filter, e.g., solely based on small edge lengths.

The detection of these configurations can be performed in par-
allel. To decimate the problematic configurations, we then perform
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(a) Original mesh (b) Decimated mesh

(c) Smoothed original mesh (d) Smoothed decimated mesh

Figure 4: Applying our decimation procedure prevents “barnacle”
artifacts from occurring during smoothing.

Figure 5: Prototype “double vertex” triangle configuration with
the two center vertices i and j (target vertices for the collapse op-
eration) marked in red.

sequential half-edge collapses of all vertices incident to the center
vertices of these configurations towards the respective center ver-
tex itself. As we only perform legal half-edge collapses, meshes
after the decimation do not contain any holes, non-manifold edges
or vertices. The total number of detected configurations is typically
quite low (usually around 0.1% of the number of vertices in the
mesh) but the procedure reliably prevents the aforementioned “bar-
nacle” artifacts as shown in Fig. 4 and the experiments in Sec. 5.

General “regularization” or cleanup approaches The goal of
our specialized decimation is to support standard surface recon-
struction procedures (of which fast implementations are widely
available) and to reliably prevent the identified artifacts as effi-
ciently as possible. Modifications to the reconstruction step itself to
improve mesh quality exist [RW08, TPG99], but can generate non-
manifold configurations and increase implementation complexity.

Instead, we want to briefly sketch a “mesh cleanup” approach
inspired by the work of Moore and Warren [MW91,MW92] which

Figure 6: Marching cubes surface mesh before (left) and after
(right) applying the outlined “mesh cleanup” procedure which suc-
cessfully removes typical sliver triangles.

improves mesh quality by displacement or snapping of vertices
while still being easy to implement as a post-processing step.
Adapted for our use, it can be summarized as: for all mesh vertices
perform incremental half-edge collapses with all one-ring neigh-
bors sharing the same closest MC grid point and displace target ver-
tices to the average position of the collapsed vertices. Optionally,
this can be restricted to vertices within a margin around a MC grid
point. An example of applying this procedure is shown in Fig. 6.

Similar to our specialized decimation approach, this cleanup step
prevents “barnacle” artifacts from occurring during smoothing. Ad-
ditionally, it reduces the total number of vertices and triangles for a
typical surface mesh by around 30% without significantly affecting
surface quality, especially when followed by smoothing. However,
this also makes it slower than our specialized approach because it
performs many more collapse operations: in our experiments it was
3-5x slower than our specialized decimation. Depending on the ap-
plication, either of the presented methods might be preferable.

3.4. Smoothing of Vertex Normals

The primary purpose of the meshes treated by our pipeline is ren-
dering to visualize the fluid. Therefore, as a last step in our post-
processing pipeline, we consider the mesh normals to improve the
perceived smoothness in renderings. For surface reconstruction of
SPH simulation data, it is common to evaluate an SPH approxima-
tion of the normals (i.e., normalized gradient of the color field) on
the mesh [MCG03] as this leads to smoother results than computing
normals from the mesh. However, this approach is not well suited
for meshes that are already smoothed with the weighted Laplacian
smoothing that we propose. Evaluating the SPH normals on the
smoothed mesh has the opposite effect and makes the mesh appear
bumpier than the geometry really is as shown in Fig. 7a.

Instead, we recommend computing vertex normals as an area
or angle weighted average of incident faces (see [BKP∗10]) fol-
lowed by optional normal smoothing iterations. Inspired by Lapla-
cian smoothing we compute the updated normal of a vertex i as

nn+1
i =

∑ j∈Vi
nn

j

∥∑ j∈Vi
nn

j∥
. (12)

This noticeably improves the smoothness of the rendered surface
as shown in Fig. 7c.
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(a) SPH normals (b) Geometry normals (c) Smoothed geometry normals

Figure 7: Using the normalized SPH gradient of the color field as normals for rendering of the mesh reintroduces bumps that were previously
smoothed out (a). Area weighted face normals are a better choice (b). With additional smoothing (here 10 iterations) of the geometry-based
normals, we can visually reduce remaining bumpiness, especially at “corners” or “edges” of the fluid near the boundary (c).

4. Implementation

For our implementation of the proposed procedure, we treated MC
as a black box and implemented the smoothing pipeline purely
as a post-processing step. We first have to perform a neighbor-
hood search in order to evaluate the per-particle weighted neigh-
bor counts as given by Eq. (11). For the neighborhood search, we
used a variant of spatial hashing due to its ease of implementa-
tion and decent performance [THM∗03, IABT10]. However, to im-
prove performance further, especially for larger amounts of parti-
cles, one could use an octree-accelerated approach with vectoriza-
tion [FFWL∗22]. To interpolate the per-particle values to the mesh,
we have to identify the particles influencing a given vertex. This
could be done by performing a special neighborhood search that
treats mesh vertices as a separate set of particles (e.g., like bound-
ary particles in standard SPH). For ease of implementation, we in-
stead chose to use an off-the-shelf implementation of the R∗-tree
spatial acceleration structure [BKSS90] which allows to query all
particles within kernel support radius of a mesh vertex.

While this allows us to implement the method in a relatively
small amount of code, performance can be improved significantly
by integrating it into a MC surface reconstruction implementation
as we can re-use parts of the pipeline. A neighborhood search has
to be performed for the reconstruction anyway if the level-set is de-
fined using an SPH sum. Furthermore, the interpolation of the per-
particle values to the mesh vertices can be performed analogously
to the interpolation of any fluid properties or attributes to the sur-
face (like e.g. the velocity field) which is a feature that is generally
useful outside of our specific application. Therefore, two relatively
expensive steps of our proposed method are basically “free” when
integrating it with the surface reconstruction which significantly re-
duces the cost of computing the smoothing weights in particular.
The only remaining noteworthy performance overhead on top of
a standard MC surface reconstruction are the smoothing iterations
themselves (which are quite cheap) and our decimation procedure.

5. Results

We implemented our smoothing approach in the open-source
surface reconstruction tool “splashsurf” [L∗23]. To demonstrate
our method on realistic simulation data, we perform simula-
tions with the SPH framework “SPlisHSPlasH” [B∗23] using DF-
SPH [BK17], volume maps boundary handling [BKWK19] and a
micropolar turbulence model [BKKW17].

Double dam break with dragons The first example shows a sim-
ple double dam break, colliding with a cubic static boundary and
four static dragon geometries. This scene, depicted in Fig. 8, shows
a lot of splashing and isolated particles, that are captured very
well and not being shrunk by our smoothing procedure. By design,
there is hardly any visible difference in the splashes between the
smoothed and unsmoothed versions.

On top of the bulk of the fluid however, it is clear that our
smoothing has the greatest effect. In the smoothed version, it is
possible to see intricate details of the surface being retained, while
the unsmoothed version is very bumpy. This is particularly empha-
sized around the specular highlights. Here, the smoothed version
shows smooth deviations in the surface due to shallow waves being
propagated, while the unsmoothed version makes the surface look
very “rough”. For more details, we refer to the supplemental video.

The mesh shown in Fig. 8 has about 2.5 million vertices and 5
million triangles. On average per frame, the entire surface recon-
struction with smoothing took 5.2s. Out of this, marching cubes
and file IO took on average 2.5s (48%). From our post-processing
pipeline 0.72s (13.8%) were spent on mesh decimation, 0.81s
(15.6%) on the weight computation and interpolation, 0.2s (3.8%)
on mesh smoothing and 0.22s (4.2%) on normal computation and
smoothing.

Dynamic objects In the second scene, we show the effectiveness
of our surface smoothing approach in a simulation of fluid interac-
tion with rigid bodies. The scene contains a beach ball, a duckling
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Figure 8: A double dam break collides with four static dragon models (2.7 million fluid particles). The images show the surface reconstruction
with our proposed smoothing (left) and surface reconstruction without smoothing (right).

and a walrus of varying densities. The objects are dropped into a
container into which fluid is poured from two rectangular emitters.

A still frame of this scene is shown in Fig. 1, where we compare
the surface reconstruction using our proposed smoothing, against
the original unsmoothed MC reconstruction. Our method is able to
retain all of the small-scale detail in splashes and isolated particles,
as well as overall shape and motion of the bulk fluid. In addition,
in the bulk of the fluid, our approach is able to entirely smooth out
the small-scale oscillations caused by the particle arrangement. For
more details, we refer to the supplemental video.

The mesh shown in Fig. 1 has about 1.2 million vertices and
2.4 million triangles. On average per frame, the entire surface re-
construction with smoothing took 2.59s. Out of this, marching
cubes and file IO took on average 1.34s (52%). From our post-
processing pipeline 0.43s (16.6%) were spent on mesh decimation,
0.22s (8.5%) on the weight computation and interpolation, 0.11s
(4.2%) on mesh smoothing and 0.10s (3.9%) on normal computa-
tion and smoothing.

6. Conclusion

We have presented a new post-processing pipeline for surface
meshes of particle-based fluids generated using marching cubes.
The core component of this pipeline is Laplacian smoothing with
our proposed feature weights based on the neighborhood deficiency
of particles. This pipeline is able to remove bumps caused by irreg-
ular placed particles, producing smooth and flat surfaces without
losing more intricate features, like drops, splashes or sharp edges
where the fluid meets a boundary. Additionally, we showed how
artifacts caused by low-quality MC triangulations can be detected
and removed with only small overhead. To further improve the final
visuals when using physically-based rendering, we showed how a
smoothed vertex normal field can be computed. Our pipeline is ef-
ficient, parallelizes well and introduces only few parameters.

The main limitations of our approach come from the inherent
properties of Laplacian smoothing. Significantly more smoothing
iterations are required when using higher MC resolutions, as the
smoothing scales with edge length while the scale of bumps stays
constant. We recommend keeping the cube sizes just small enough,
that isolated particles are still captured appropriately.

In the future, it could be explored if directly smoothing the scalar
values at the MC grid points using our positional weights yields
good results. The main benefit of this would be better topology, as
triangles are directly generated for the smooth case instead of cap-
turing the bumps. It would also be interesting to further explore the
different introduced strategies to avoid artifacts due to bad qual-
ity marching cubes triangles, e.g., to improve performance of the
mesh-cleanup procedure.
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