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1. Full Cosserat model for curved shells

For quick reference, we reproduce the Cosserat model for curved
shells with terms up to order O(ℎ5) as presented by Nebel et al.
[NSBN23], originally derived [BGMN19] that we implemented for
comparison with the simplified plate model for flat reference con-
figurations [Nef04; SNB16]. Overall, the energy density of the shell
can be decomposed as

Ψ(E,𝚪) = Ψmemb (E,𝚪) +Ψbend (𝚪) , (1)

with the strain measures as defined in Section 3.1 of the paper. The
full energy depends on the mean curvature 𝐻, the Gaussian curva-
ture 𝐾 , the “second fundamental tensor” b and the “surface alter-
nating pseudo-tensor” c which are defined in Section 2. The indi-
vidual terms of the energy density up to order O(ℎ5) are then given
by
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with

Ψmixt (A,B) = 𝜇(symA : symB) + 𝜇𝑐 (skewA : skewB) (4)
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and finally
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𝑐
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)
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By assuming a planar reference configuration, all terms scaled by
the mean curvature 𝐻, the Gaussian curvature 𝐾 and the second

fundamental tensor b vanish and the plate energy described in Sec-
tion 3.2 of the paper is recovered.

2. Surface curvature

The Cosserat shell model for curved initial configurations shown in
Section 1 depends on the curvature of shell in its rest state. Here,
we briefly present how to compute these values in the notation we
used to describe the kinematic relations in Section 3.1 of the paper.

In classic shell models and in computer graphics, the surface cur-
vature is often described using the shape operator or Weingarten
map which can be represented by a matrix S ∈ R2×2 which is given
by

S = I−1II = −(J𝑇J)−1J𝑇∇𝜔𝒏 = −J†∇𝜔𝒏 , (8)

where 𝒏 is the surface normal and II ∈ R2×2 represents the second
fundamental form of the surface which can be computed as

II = −J𝑇∇𝜔𝒏 or [II]𝛼𝛽 =
𝜕2𝒎0
𝜕𝜉𝛼𝜕𝜉𝛽

· 𝒏 , (9)

see [Pet23]. The Cosserat shell model instead uses the “second fun-
damental tensor” b ∈ R3×3 which encodes the same information as
the shape operator and corresponds to the negative surface gradient
of the normal field:

b = −∇S𝒏 = −∇𝜔𝒏J† . (10)

Evidently, b is closely related to the second fundamental form II,
in particular we have

b = (𝒂𝛼 ⊗ 𝒆𝛼)II(𝒆𝛽 ⊗ 𝒂𝛽) = (J†)𝑇 IIJ† . (11)

With these definitions, we can compute the mean curvature 𝐻 and
the Gaussian curvature 𝐾 as

𝐻 =
1
2

trS =
1
2

trb and 𝐾 = detS =
1
2
(tr(b)2 − tr(b2)) . (12)

In the constitutive model, the quantities 𝐻, 𝐾 and b are only evalu-
ated with respect to the undeformed reference configuration using
the corresponding normal field at rest 𝒏0.

However, a straightforward finite element discretization of the
above expressions is only accurate if the geometry is closely ap-
proximated by the discretization, e.g. if it can be represented well
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by curved elements. If the reference configuration is piecewise
affine or if linear triangle elements are used for the discretization
(i.e. individual elements are planar) the expressions would evaluate
to zero inside of the elements. In this case, it could be beneficial
to instead apply results from discrete differential geometry and for
example use expressions for the curvatures as presented by Wen
and Barbič [WB23] depending on the mid-edge normals between
elements or investigate a combined approach aware of element cur-
vature and normal jumps between elements inspired by Le et al.
[LDB*23].

Finally, the constitutive model also uses the “surface alternating
pseudo-tensor” c ∈ R3×3 given by

c =
1

√
detI

(𝒂1 ⊗ 𝒂2 − 𝒂2 ⊗ 𝒂1) . (13)

All three tensors a = JJ†, b and c are in the tangent plane of the
surface as they do not contain any component normal to the sur-
face [BGMN19].

3. Element basis functions and quadrature

The basis functions for a second-order Lagrange triangle element
with vertices

𝒑1 = [0,0]𝑇 , 𝒑2 = [0,1]𝑇 , 𝒑3 = [1,0]𝑇
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]𝑇

are given by

𝑁1 (𝑥, 𝑦) = 2𝑥2 +4𝑥𝑦−3𝑥 +2𝑦2 −3𝑦 +1 ,
𝑁2 (𝑥, 𝑦) = 𝑥(2𝑥−1) ,
𝑁3 (𝑥, 𝑦) = 𝑦(2𝑦−1) ,
𝑁4 (𝑥, 𝑦) = 4𝑥(1− 𝑥− 𝑦) ,
𝑁5 (𝑥, 𝑦) = 4𝑥𝑦 ,
𝑁6 (𝑥, 𝑦) = 4𝑦(1− 𝑥− 𝑦) .

See, for example, the book by Wriggers [Wri08, Eq. 4.27].

A three-point Guassian quadrature rule of order two with all
points in the interior of the unit triangle with vertices [0,0]𝑇 ,
[1,0]𝑇 and [0,1]𝑇 is given by the quadrature points
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with the weights

𝑤1 =
1
6
, 𝑤2 =

1
6
, 𝑤2 =

1
6
.

The weights are not normalized and already account for the area
of the given unit triangle (i.e. multiplication by 0.5). See [Wri08,
Table 4.3] or [Dun85].

4. Timings

For full timing information of the presented experiments see Ta-
ble 1 on the following page.
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Cells # DOF averaged Runtime Rel. cost of

Scene Variant Type # disp. rot. dt iter. total avg. step assembly LU

Twisting strip - Tri6 320 2187 615 10ms 4.2 31.37s 78ms 12.7% 81.2%
Plate under load 10x1 Tri3 20 66 66 10ms 1.5 0.86s 4ms 59.7% 33.5%

20x2 Tri3 80 189 189 10ms 1.5 2.17s 11ms 54.0% 35.1%
40x4 Tri3 320 615 615 10ms 1.9 5.50s 28ms 42.4% 49.8%
80x8 Tri3 1280 2187 2187 10ms 2.0 13.61s 68ms 33.6% 58.6%
160x16 Tri3 5120 8211 8211 10ms 2.0 40.30s 201ms 23.4% 72.8%
320x32 Tri3 20480 31779 31779 10ms 2.0 138.75s 694ms 21.7% 76.3%
640x64 Tri3 81920 124995 124995 10ms 2.0 477.72s 2389ms 19.2% 78.9%
10x1 Tri6 20 189 66 10ms 2.4 2.00s 10ms 58.6% 32.6%
20x2 Tri6 80 615 189 10ms 2.3 6.42s 32ms 28.6% 51.9%
40x4 Tri6 320 2187 615 10ms 2.0 9.38s 47ms 21.9% 64.1%
80x8 Tri6 1280 8211 2187 10ms 2.0 30.96s 155ms 13.9% 78.2%
160x16 Tri6 5120 31779 8211 10ms 2.0 110.05s 550ms 13.1% 83.5%
320x32 Tri6 20480 124995 31779 10ms 2.0 371.19s 1856ms 10.9% 87.4%
640x64 Tri6 81920 495747 124995 10ms 2.0 1380.15s 6901ms 8.8% 89.7%

Cylinder coiling 4x1 Tri3 8 30 30 10ms 1.3 2.65s 2ms 47.4% 36.9%
8x2 Tri3 32 81 81 10ms 1.4 7.35s 6ms 65.9% 25.4%
16x4 Tri3 128 255 255 10ms 1.6 12.58s 10ms 43.4% 38.5%
32x8 Tri3 512 891 891 10ms 1.6 35.44s 30ms 36.8% 49.8%
64x16 Tri3 2048 3315 3315 10ms 1.5 99.03s 82ms 28.2% 64.0%
128x32 Tri3 8192 12771 12771 10ms 1.5 293.21s 244ms 21.7% 73.6%
256x64 Tri3 32768 50115 50115 10ms 1.5 996.39s 830ms 21.5% 76.1%
4x1 Tri6 8 81 30 10ms 1.6 5.82s 5ms 48.0% 27.9%
8x2 Tri6 32 255 81 10ms 1.6 14.07s 12ms 51.6% 31.4%
16x4 Tri6 128 891 255 10ms 1.6 29.49s 25ms 30.7% 49.0%
32x8 Tri6 512 3315 891 10ms 1.6 69.91s 58ms 21.7% 68.9%
64x16 Tri6 2048 12771 3315 10ms 1.5 218.10s 182ms 14.4% 79.7%
128x32 Tri6 8192 50115 12771 10ms 1.5 750.85s 625ms 12.8% 85.1%
256x64 Tri6 32768 198531 50115 10ms 1.5 2657.76s 2213ms 10.5% 87.5%

Lotus flower 4x4 Tri6 32 243 75 10ms 1.7 16.3s 16ms 39.5% 25.0%
8x8 Tri6 128 867 243 10ms 1.6 29.28s 29ms 27.8% 43.3%
16x16 Tri6 512 3267 867 10ms 1.6 71.57s 71ms 17.3% 60.8%
32x32 Tri6 2048 12675 3267 10ms 1.6 212.07s 212ms 13.0% 77.0%
64x64 Tri6 8192 49923 12675 10ms 1.6 651.62s 651ms 9.2% 88.8%
100x100x1 (CG solver) Tet4 60000 61206 61206 10ms 1.3 523.65s 524ms 43.0% 51.9%

Bunny ℎ = 10mm, KL Tri3 6612 9924 - 10ms 1.3 74.69s 149ms 19.0% 75.9%
ℎ = 3.75mm, KL Tri3 6612 9924 - 1ms 1.9 1213.09s 243ms 23.3% 69.3%
ℎ = 1.5mm, KL Tri3 6612 9924 - 1ms 3.0 1896.03s 379ms 22.3% 71.1%
ℎ = 10mm Tri6 6612 39678 9924 10ms 1.3 254.27s 508ms 10.2% 82.2%
ℎ = 3.75mm Tri6 6612 39678 9924 1ms 1.7 3277.94s 656ms 9.1% 85.9%
ℎ = 1.5mm Tri6 6612 39678 9924 1ms 3.0 5579.10s 1116ms 9.1% 85.9%

Curvature modes Top Left Tri6 64 495 153 10ms 1.6 9.82s 20ms 12.5% 39.3%
Armadillos Left Tri6 15482 92898 23229 5ms 1.7 1113.99s 1391ms 7.7% 89.4%
Buckling circle Inner Tri6 120 783 213 10ms 1.7 17.47s 22ms 17.7% 60.7%

Outer Tri6 120 783 213 10ms 2.0 19.65s 25ms 16.8% 62.3%
Möbius strip Plate model Tri6 80 600 180 1ms 1.8 71.53s 18ms 28.7% 68.3%

Shell model Tri6 80 600 180 1ms 1.8 76.35s 19ms 28.5% 61.5%
Dumpling Plate model Tri6 1536 9411 2403 10ms 2.1 126.46s 210ms 7.1% 75.2%

Shell model Tri6 1536 9411 2403 10ms 2.1 140.78s 234ms 16.2% 67.6%
Papyrus scroll - Tri6 400 2583 693 9.9ms 4.5 272.08s 180ms 21.5% 56.1%

Table 1: Timing information on all experiments were obtained on a workstation system with an AMD Ryzen Threadripper PRO 5975WX CPU
(32 cores, 3.6GHz) and 256GB of DDR4 8-channel RAM. For the experiments “Lotus flower”, “Curvature modes” and “Armadillos” the
quantities are given only for a single mesh (i.e. one plate/one armadillo) as the timings are approximately identical between all mesh instances
used for the scenes. The element types “Tri3”, “Tri6” and “Tet4” denote first- and second-order Lagrangian triangle elements and first-
order Lagrangian tetrahedrons, respectively. Rotational degrees of freedom are always discretized using first-order elements. The “#DOF”
columns “disp.” and “rot.” show the total number of (scalar) displacement and rotational degrees of freedom per simulation, respectively.
The column “iter.” shows the average number of Newton iterations required for convergence per time step. The last columns show respectively
the cost of the matrix assembly (including the evaluation of the material model and its derivatives) and the LU decomposition linear solves
relative to the total runtime of the simulation. The remaining, unaccounted percentage includes (depending on the experiment): collision
detection, interpolation to the linear rendering mesh and file output. Note that all shell simulations used LU decomposition to solve linear
systems while the volumetric lotus flower simulation used a CG solver as described by [LFJ*23].
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